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a b s t r a c t

This paper proposes a class of lack-of-fit tests for checking the adequacy of a presumed
parametric form of the regression function in Tobit regression models. This class of
tests is a weighted adaptation of the Zheng’s test for fitting a parametric regression
model. The asymptotic null distributions of the underlying test statistics are shown to
be normal. Moreover, the consistency of these tests against some fixed alternatives and
asymptotic power against some local nonparametric alternatives are also derived. An
optimal test within the proposed class of tests against a given sequence of nonparametric
local alternatives is identified. A finite sample simulation shows some superiority of some
of the proposed tests, compared to some of the existing tests.
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1. Introduction

The Tobit regression model was originally designed for investigating the relationship between the household
expenditures on durable goods and the income. It is now a frequently used tool formodeling censored or truncated variables
in many areas such as econometrics, biometrics, agricultural study and engineering fields. Early development of the Tobit
regressionmodel can be traced back to Tobin [25]. The survey paper of Amemiya [3] provided a comprehensive introduction
to the Tobit model, together with a detailed discussion on the commonly used estimation procedures. Many empirical
examples can be found in Amemiya [3], Blaylock and Blisard [5], McConnel and Zetzman [20], Lichtenberg and Shapiro
[18], Adesina and Zinnah [1], Ekstrand and Carpenter [9] and the references therein.

To be specific, suppose the relationship between a random scalar Y ∗ and a random vector X can be fitted by a classical
regression model, Y ∗

= m(X) + ε, where m(x) = E[Y ∗
|X = x]. In some cases, Y ∗ can only be observed if Y ∗ falls into

a certain range. The Tobit regression model assumes Y ∗ can be observed if its value is above a certain threshold y0 which
is usually assumed to be known, that is, one actually observes Y = Y ∗I(Y ∗ > y0) + y0I(Y ∗

≤ y0). Without the loss of
generality, we shall take y0 = 0 throughout this paper.

The standard Tobit regressionmodel assumes thatm(x) = α+β ′x, and the error ε has a normal distributionwithmean 0
and unknown variance σ 2

ε . The existing literature on the standard Tobit regression model mainly focuses on the estimation
of the unknown regression parameters (α, β ′)′ and the error variance σ 2

ε . Under the normality assumption of the error
term ε, Amemiya [2] and Heckman [12,13] proposed consistent estimators for θ = (α, β ′, σ 2

ε )′. These estimators are not
consistent if the normality assumption does not hold. A robust estimator of θ was proposed by Powell [21] based on the
least absolute deviations. Lewbel and Linton [17] and Zhou [33] developed nonparametric regression estimators for a class
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of general nonparametric Tobit regressionmodels, but the hard-to-interpret nature of nonparametric procedures still makes
the parametric modeling the first choice for practitioners.

Generally speaking, the choice of the parametric forms ofm(x) is either based on some empirical evidence or simply for
the sake of mathematical convenience. Misspecification of the function form ofm(x) often leads to misleading conclusions.
For example, Horowitz and Neumann [14] showed that the violation of the linearity assumption can produce inconsistent
estimators of the parameters and biased prediction of the survival time in censored regressionmodels. Fromboth theoretical
and practical point of views, it is necessary to develop formal tests to check the adequacy of the selected regression model.

The literature on the lack-of-fit testing in Tobit regression models is relatively scarce, compared to that in the classical
regression setup. Wang [26] proposed a simple nonparametric test in Tobit median regression model in which the median
of the random error is assumed to be zero, while the null hypothesis is restricted to linear regression functions only. Song
[23] developed a lack-of-fit testing procedure for a more general null hypothesis, not limited to linear regression functions,
by assuming that E(ε) = 0. The proposed test is based on the Khamaladze type transformation of a certain marked residual
process. The most restrictive assumption in Song [23] is that the predictor variable X must be one-dimensional. Following a
few of the significant works such as Härdle and Mammen [11] and Koul and Ni [16] in the classical regression models, Song
and Zhang [24] developed a class of lack-of-fit tests based on a class of empirical L2-distances between a nonparametric
estimator and a parametric estimator of the regression function being fitted under the null hypothesis. The function form
being tested may not be limited to linear, and the predictor can be multidimensional. In this paper, we apply the idea from
Zheng [32] to construct a class of new lack-of-fit tests for the Tobit regressionmodel. Due to its computational simplicity and
good performance, the idea from Zheng [32] has been also implemented in several other contexts, see, e.g., Dette and von
Lieres undWilkau [7], andWang and Zhou [27], among others. Lopez and Patilea [19] developed a nonparametric lack-of-fit
test using Zheng’s idea for a parametric mean regression model when the response variable is censored at random, which
is quite different from our current setup.

Although Wang [26] conjectured that her test can detect local alternatives that converge to the null at a certain rate,
similarly as in testing the validity of themean regression functions, the explicit asymptotic power functionwas not given. In
the current paper, we derive an explicit expression for the asymptotic power under certain local alternatives and describe
an optimal test within the class of proposed tests for a given local alternative.

Other testing methods could also be adapted to deal with the model adequacy checking in the Tobit regression models.
For example, the consistent test proposed by Dette [6] and the modified version of the Härdle and Mammen [11] (HM) test
constructed in Zhang and Dette [31]. In Section 4, a finite sample comparison of a member of the proposed class of tests,
denoted by KSL, is made with that of Dette (D) and HM tests adapted to the current setup. In Table 4 of Section 4, it is
observed that the empirical level of the D-test is much smaller than that of the KSL and HM tests, while it is comparable for
these two tests. The empirical power of HM is somewhat better than that of the KSL test, while both of these tests dominate
the D-test. For more details see Section 4. Although the KSL-test appears to be somewhat inferior to the HM-test in this
limited simulation, it is still a competitive candidate for model checking due to its relatively simple form and computational
ease, in particular when the number of predictors d is large.

The paper is organized as follows. Section 2 contains the description of the proposed test statistics, and a list of technical
assumptions needed for the asymptotic results. The main results are presented in Section 3, including the asymptotic null
distributions, the consistency and the local power of the tests; simulation studies are presented in Section 4, and the proofs
of the main results are deferred to Section 5.

Throughout this paper, we will use fv, Fv to denote respectively, density and distribution function (d.f.) of a random
variable v, and →D denotes the convergence in distribution.

2. Test statistics

Consider the classical regression model Y = µ(X) + ε, where X is a d-dimensional random predictor, ε is the error term
such that E(ε|X) = 0, so that µ(x) = E(Y |X = x). Let Θ ⊂ Rq and m(x, θ), x ∈ Rd, θ ∈ Θ be a family of parametric
functions, and consider the problem of testing

H0 : µ(x) = m(x, θ), ∀x ∈ Rd, and for some θ ∈ Θ, vs. H1 : H0, is not true.
Zheng [32] used the following idea to propose a test of H0. Let e := Y − m(X, θ) and f denote the density of X .

Then, E(e|X) = µ(X) − m(X, θ). Hence, under H0, E[eE(e|X)f (X)] = 0, while under H1, E[eE(e|X)f (X)] = E{[µ(X) −

m(X, θ)]2f (X)} > 0. So an empirical version of E[eE(e|X)fX (X)] can be used as a building block for a test statistic. Based
on the sample {(Xi, Yi) : i = 1, 2, . . . , n} from the above model, one obtains an estimate θ̂ of θ under H0 using existing
procedures in the literature. After replacing ei by êi = Yi − m(Xi, θ̂ ), E(ei|Xi) and fX (Xi) by their Nadaraya–Watson kernel
estimators, Zheng’s test statistic is a standardized version of the statistic

1
n(n − 1)

n
i≠j

Kh(Xi − Xj)êiêj,

where K is the kernel function, Kh(·) := h−dK(·/h), and h is the bandwidth. Zheng established consistency of this test. The
asymptotic null distribution of the standardized version of the above statistics alongwith its power against local alternatives
can be derived by the aid of the central limit theorem for degenerate U-statistics of Hall [10].
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Now consider the Tobit regression model

Y ∗
= m(X) + ε, Y = Y ∗I(Y ∗ > 0),

and the problem of testing

H0 : m(x) = m(x, θ0), ∀x ∈ Rd, and for some θ0 ∈ Θ, vs. H1 : H0 is not true.

Because Y ∗ can be observed only when Y ∗ > 0, it is not feasible to directly apply Zheng’s test in the Tobit regression model
for testing H0. We need to build a new regression model which can show a certain dependence between an observable
quantity and the regression functionm(x). A natural way to find this dependence is to consider the conditional expectation
g(x) := E(Y |X = x). Throughout this paper, we shall assume that the density function fε is known for the sake of simplicity
and model identifiability, but fε need not be a Gaussian density. It might appear restrictive to assume that the distribution
of fε is known, but in real applications, in particular for most econometric literature, this is indeed a common practice.

Now, let Qj(z) =


∞

z ujfε(u)du, j = 0, 1, z ∈ R. Then

g(x) = E(Y |X = x) = m(x)Q0(−m(x)) + Q1(−m(x)). (2.1)

This motivates us to consider the following regression model

Y = g(X) + ξ = m(X)Q0(−m(X)) + Q1(−m(X)) + ξ . (2.2)

Clearly, ξ and g(X) are uncorrelated.
An attractive feature of the model (2.2) is that, as a functional of m(x), g is strictly increasing, provided Fε(−a) < 1, for

all a ∈ R. This follows because by Lemma 5.1, ∂(aQ0(−a) + Q1(−a))/∂a = 1 − Fε(−a) > 0. Therefore, testing for H0 is
equivalent to testing for

K0 : g(x) = g(x, θ) for some θ ∈ Θ, versus K1 : K0 is not true

for regression model (2.2), where g(x, θ) is the same as g(x) withm(x) replaced bym(x, θ).
Another way to proceed is to base a test on I(Y = 0). Note that E(I(Y = 0)|X = x) = 1 − Q0(−m(x)) = Fε(−m(x)),

which as a functional of m(x), is also strictly monotone provided now that Fε is strictly increasing. As a result, one might
consider the binary regression model

I(Y = 0) = 1 − Q0(−m(X)) + η, (2.3)

where η denotes the error. Because this model only uses the truncation information of Y ∗, not the full observed data, the
corresponding test may not be as powerful as the one based on the model (2.2), which is also confirmed by the simulation
studies of Section 4. Throughout this paper, we will only focus on the model (2.2), except for a brief discussion on the finite
sample performance of a test based on the model (2.3) given in Section 4.

Let θ̂n be any
√
n-consistent estimator of θ0 under H0, ξ̂i = Yi − g(Xi, θ̂n), K be a symmetric density function and let

h = hn be a sequence of windowwidths, and w(x) be an positive measurable function. Then, following Zheng, a class of test
statistics, one for each w, for testing K0 vs. K1, hence for testing the hypotheses H0 versus H1, is

Vn =
1

n(n − 1)hd


i≠j

K

Xi − Xj

h


ξ̂iξ̂jw(Xi)w(Xj). (2.4)

The presence of the weight function w in Vn allows for choosing an optimal test against a sequence of local alternatives
among this class of tests.

We shall show that the asymptotic null distribution of nhd/2Vn is normal with mean 0 and variance

σ 2
= 2


K 2(u)du


τ 4(x)f 2X (x)w4(x)dx, (2.5)

where τ 2(x) = E[(Y − g(X, θ))2|X = x]. A consistent estimator of σ 2 is given by

σ̂ 2
=

2
n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξ̂ 2
i ξ̂ 2

j w2(Xi)w
2(Xj). (2.6)

The proposed test statistic for testing K0 is Tn = nhd/2Vn/σ̂ , with the large values of Tn being significant.
We shall now describe the assumptions needed to derive the asymptotic results of these test statistics.

(C1) The error density fε is bounded, E(ε) = 0, and E(ε4) < ∞; ε and X are independent.
(C2) τ 2(x) = E[(Y − g(X))2|X = x], ν4(x) = E[(Y − g(X))4|X = x] are continuously differentiable with respect to x, and

the derivatives are bounded by a measurable function b(x) such that Eb2(X) < ∞.
(C3) The density function fX of X and its first-order derivatives are uniformly bounded.
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(C4) m(x, θ) is continuously differentiable with respect to θ , the vector of derivatives ṁ(x, θ) satisfies E∥ṁ(X; θ0)∥
4 < ∞

and the following: for any
√
n-consistent estimator θ̂n of θ0,

sup
1≤i≤n

|m(Xi, θ̂n) − m(Xi, θ0) − (θ̂n − θ0)
′ṁ(Xi, θ0)| = Op(1/n).

(C5) The kernel function K is continuous, bounded, symmetric around 0, and

x2K(x)dx < ∞.

(C6) The bandwidth h → 0, nhd
→ ∞, as n → ∞.

(C7) The weight function w is continuous and E{[τ 8(X) + ∥ṁ(X, θ0)∥
4
]w8(X)} < ∞.

Conditions (C2) and (C3) are the same as theAssumption 1 in Zheng [32], and are very typical in nonparametric smoothing
literature. Condition (C4) plays a similar role as the Assumption 2 in Zheng [32] to guarantee the negligibility of the higher
order term in some Taylor expansions used when deriving the asymptotic results of these test statistics. The kernel function
in Condition (C5) and the bandwidth h in Condition (C6) are the most commonly used ones in nonparametric literature.

3. Main results

We shall assume that there always exists a
√
n-consistent estimator for the parameter θ in the regression function under

H0. The theorem below states the asymptotic null distribution of the test statistics Tn. In the sequel, all limits are taken as
n → ∞, unless mentioned otherwise.

Theorem 3.1. Suppose (C1)–(C7) hold. Then under H0, Tn = nhd/2Vn/σ̂ →D N(0, 1),where Vn is defined in (2.4) and σ̂ in (2.6).

Hence, the asymptotic size of the test that rejects H0, whenever |Tn| > z1−α/2, is α, where z1−α/2 is the (1 − α/2)100%
percentile of the standard normal distribution.

Next, consider the consistency of this test. Let γ ∉ {m(x, θ), x ∈ Rd, θ ∈ Θ} be a measurable real valued function on Rd

with Eγ 2(X) < ∞. Consider the alternate hypothesis

Ha : m(x) = γ (x), ∀ x.

To prove the consistency of the proposed tests against Ha, we have to consider the asymptotic behavior of θ̂n under the
alternative Ha. In the classical regression setup, Jennrich [15], Wu [30], and White [28,29] showed that, under some mild
regularity conditions, the nonlinear least squares estimator converges in probability and is asymptotically normal even in the
presence of model misspecification. Similarly, for the regression model (2.2), if we define θa = argminθEγ [Y − g(X, θ)]2,
where Eγ is the expectation under Ha, then under Ha and some regularity conditions on the m(x, θ), we can show that
√
n(θ̂n − θa) = Op(1). We will not pursue a rigorous verification of this claim here. The relevant discussion can be found in

Zheng [32]. Let gγ (x) denote the function g(x) where m(x) is replaced by γ (x).

Theorem 3.2. Suppose all the conditions in Theorem 3.1 hold with θ0 replaced by θa, and E{[gγ (X) − g(X, θa)]
2fX (X)} > 0.

Then, for any 0 < α < 1, the test that rejects H0 whenever |Tn| > z1−α/2 is consistent against the alternatives Ha.

Next, we describe the asymptotic power of the proposed tests against sequences of local nonparametric alternatives. For
this purpose, let δ(x) be a continuous function such that Eδ2(X)w2(X) < ∞, and consider the following sequence of local
alternatives

Hℓoc : m(x) = m(x, θ0) + δ(x)/
√

nhd/2. (3.1)

We continue to assume that the estimators θ̂n used in the test statistic are satisfying
√
n(θ̂n − θ0) = Op(1) without a

rigorous justification. We have

Theorem 3.3. Suppose all the conditions in Theorem 3.1 hold. Then under Hℓoc in (3.1), Tn →D N(µ, 1), where µ =

EQ 2
0 (−m(X, θ0))δ

2(X)w2(X)fX (X)/σ and σ is defined in (2.5).

Optimalw: FromTheorem3.3we conclude that the asymptotic power of the proposed test is 1−Φ(zα/2−µ)+Φ(−zα/2−µ)
which is an increasing function of µ. Thus, the weight function w that will maximize the power is the one that maximizes
µ. But by the Cauchy–Schwarz inequality,

µ =


Q 2
0 (−m(x, θ0))δ2(x)w2(x)f 2X (x)dx

2

K 2(u)du


(τ 2(x))2f 2X (x)w4(x)dx

≤


Q 4
0 (−m(x, θ0))δ4(x)f 2X (x)/(τ 2(x))2dx

2

K 2(u)du

,

with equality holding, if and only if, w(x) ∝ Q0(−m(x, θ0))δ(x)/τ 2(x), for all x. Because µ is unique for all w’s which are
different up to a multiple, we may take the optimal w to be w(x) = Q0(−m(x, θ0))δ(x)/τ 2(x). Clearly, this weight function
w is unknown because of θ0, but one can estimate it by replacing θ0 with any consistent estimator.
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If the regression model (2.3) is used for model checking, and the first order derivative of the density function
fε is bounded, then under the local alternative hypothesis (3.1), one can show that Tn →D N(µ, 1) with µ =

Ef 2ε (−m(X, θ0))δ
2(X)w2(X)fX (X)/σ and σ is defined in (2.5). It is easily seen that here the optimal weight function w(x) =

fε(−m(x, θ0))δ(x)/τ 2(x).
As we mentioned in Section 1, some other existing tests of the lack-of-fit of a regression function in ordinary regression

models can also be modified to check the function form in the Tobit regression model. Let

vij =
K((Xi − Xj)/h)

n
k=1

K((Xi − Xk)/h)
, cij =

n
k=1

vkivkj, i, j = 1, 2, . . . , n.

The empirical version of Härdle and Mammen [11]’s test (HM-test), proposed by Zhang and Dette [31], is to reject the null
hypothesis whenever nhd/2Γ̂

−1/2
n,HM |Tn,HM − Ĉn,HM | > zα/2, where

Tn,HM =
1
n

n
i=1


n

j=1

vijξ̂j

2

, Ĉn,HM =
1
n

n
i=1

n
j=1

v2
ji ξ̂

2
i , Γ̂n,HM = 2hd


i≠j

c2ij ξ̂
2
i ξ̂ 2

j .

The large sample results of this test statistic under the null and alternative hypotheses can be obtained in a similar way as
in Zhang and Dette [31].

Dette [6]’s test (D-test) is based on the difference between the least squares variance estimate from the fitted regression
model and a nonparametric kernel variance estimate. The test statistic has the form nhd/2Γ̂

−1/2
n,D |Tn,D − Ĉn,D|, where

Tn,D =
1
n

n
i=1

ξ̂ 2
i −

1
n

n
i=1


Yi −

n
j=1

vijYj

2

, Γ̂n,D = 2chd

i≠j

c2ij ξ̂
2
i ξ̂ 2

j ,

Ĉn,D =
1
n

n
i=1

n
j=1

v2
ji(ξ̂i − ξ̂j)

2
+

1
n

n
i=1


j≠k≠i

vijvikξ̂
2
i ,

and

c =

 
2K(u) −


K(u + v)K(v)dv

2 du
K 2(u)du

.

The asymptotic normality under the null hypothesis and the consistency under certain fixed alternative hypotheses can be
shown using a similar argument as in Dette [6] for the random design.

In the classical regression case where (Y , X) are fully observed, Zhang and Dette [31] found out that by choosing the
weighting functions properly, and adopting equal bandwidths, HM-test is more powerful than Zheng [32]’s test, and is
more powerful than the D-test. In the next section, we arrive at a similar conclusion in a simulation study in the current
setup when we compare the proposed test corresponding to w ≡ 1 with the D and HM tests.

4. Simulation studies

To assess the finite sample performance of the proposed tests, Monte Carlo simulations are conducted in this section.
Linear regression functions with d = 1 and d = 2 are chosen to serve as the null models, a variety of quadratic components
are added to the linear terms to serve as the alternative models. The significance level is chosen to be 0.05, and the sample
sizes considered are n = 100, 300, 500 for all simulations. For each setup, the test is repeated 1000 times, the empirical
level and power are calculated by #{|Tn| ≥ 1.96}/1000. The simulation setups are exactly the same as in Song and Zhang
[24].

In the following simulation studies, we consider the proposed tests corresponding to the uninformative weight function
w(x) ≡ 1 and the optimal weight function.
Simulation 1: Here, the data are generated from the model

Y ∗
= α + βX + γ X2

+ ε, Y = max{Y ∗, 0}. (4.1)

In the simulation, X ∼ N(0, 1), ε ∼ N(0, σ 2
ε ), the true regression parameters are chosen to be α = 1, β = 1 and σ 2

ε = 1.
We used a standard normal density function as the kernel function, and h = n−1/5 as the bandwidth. Data from the model
with γ = 0 are used to study the empirical size, while data from the models with γ = 0.1, 0.2, 0.3, 0.5 are used to study
the empirical powers. Under the current setup, we can see that theoretically P(ε ≤ −1 − X) ≈ 24% observations of Y ∗ are
truncated below 0 when γ = 0. The censReg function in the R package censReg is used to calculate the estimates of all
unknown parameters.
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Table 1
d = 1. Empirical powers.

100 300 500 100 300 500

γ = 0.0 Test I 0.006 0.004 0.005 0.040 0.035 0.055
Test II 0.010 0.006 0.011 0.050 0.065 0.060

γ = 0.1 Test I 0.016 0.049 0.091 0.075 0.140 0.225
Test II 0.008 0.014 0.035 0.085 0.080 0.095

γ = 0.2 Test I 0.086 0.447 0.778 0.270 0.600 0.900
Test II 0.015 0.095 0.191 0.065 0.180 0.350

γ = 0.3 Test I 0.353 0.924 0.996 0.580 0.970 1.000
Test II 0.029 0.225 0.528 0.110 0.385 0.645

γ = 0.5 Test I 0.903 1.000 1.000 0.980 1.000 1.000
Test II 0.136 0.710 0.970 0.375 0.860 1.000

For the sake of convenience, we denote the test based on model (2.2) as Test I, and the one based on model (2.3) as Test
II in which ξ̂i is replaced by I(Yi = 0) − Fε(−m(Xi, θ̂ )). First, the uninformative weight function w(x) = 1 is considered.
The simulation results are presented in the left hand side of Table 1. The simulation shows that the empirical levels are
all less than the nominal levels in all the chosen cases, hence the proposed tests are conservative. This is very common for
nonparametric smoothing tests. The test has small powers against the alternative models for small sample sizes, but the
power improves as sample sizes get larger. As discussed in Section 2, Test II is much less powerful than Test I.

In general, bootstrap provides more accurate approximation to the distribution of the test statistic than the asymptotic
normal distribution. Since the distribution of ε is normal with mean 0 and unknown variance σ 2

ε , so a viable parametric
bootstrap algorithm can be developed as follows:

(1) Obtain the estimates α̂, β̂ and σ̂ 2
ε for α, β and σ 2

ε based on the sample (Yi, Xi), i = 1, 2, . . . , n, and calculate the test
statistic Tn;

(2) At stage b, generate n i.i.d. random numbers from N(0, σ̂ 2
ε ), denote them as εb

i , and calculate Y ∗b
i = α̂ + β̂Xi + εb

i and
Y b
i = max{Y ∗b

i , 0}, i = 1, 2, . . . , n;
(3) Estimate α, β, σ 2

ε from data (Y b
i , Xi), denote these estimators as α̂b, β̂b and σ̂ b

ε , and calculate the test statistic T b
n based

on the residuals

ξ̂ b
i = Y b

i − [(α̂b
+ β̂bXi)Φ((α̂b

+ β̂bXi)/σ̂
b
ε ) + σ̂ b

ε φ((α̂b
+ β̂bXi)/σ̂

b
ε )]

in Test I, and ξ̂ b
i = I(Y b

i = 0) − Φ(−(α̂b
+ β̂bXi)/σ̂

b
ε ) in Test II;

(4) Repeat step (2)–(3) B times, and find out the 2.5-th and 97.5-th percentiles from T 1
n , T 2

n , . . . , T B
n .

(5) Reject the null hypothesis if Tn is less than the 2.5-th or larger than the 97.5-th percentiles found in Step (4).

In our simulation studies, B is chosen to be 200, and in each scenario, the above bootstrap algorithm is repeated 200 times.
The consistency of the above bootstrap algorithm could be justified by adapting the method in Beran [4] and in Section 4.5
from Shao and Tu [22]. This bootstrap algorithmwas also used by Drukker [8] for bootstrapping a conditional moments test
for normality in the Tobit regression model. The right hand side of Table 1 reports the simulation results. As expected, all
the empirical levels are close to the nominal level 0.05, and the powers are all larger than the ones reported in the left panel
of Table 1.

For comparison purposes,we also conduct simulation studies based on the optimalweight functions. Let z = (α+βx)/σε .
Formodel (2.2), the optimal weight function isw(x) = Φ(z)x2/τ 2(x), and τ 2(x) = σ 2

ε [1+z2]Φ(z)+σ 2
ε zφ(z)−σ 2

ε [zΦ(z)+
φ(z)]2. For model (2.3), the optimal weight function is w(x) = φ(z)x2/τ 2(x), and τ 2(x) = Φ(z)(1 − Φ(z)). Again, α, β and
σε are estimated as above. Simulation results are presented in Table 2. The left panel is for the test based on the model (2.2),
and the right panel is for the test based on the model (2.3). It is easily seen that the empirical levels are closer to 0.05 than
the ones reported in Table 1, and as expected, the empirical powers are larger than the corresponding ones in Table 1 for
large sample sizes. Recall that the optimal weight functions are indeed ‘‘optimal’’ asymptotically, so it is no surprise to see
the empirical powers in Table 2 being less than the ones reported in Table 1 for small sample sizes. Also, Test I in general is
more powerful than Test II with the optimal weight.
Simulation 2: To see the performance of the proposed test for d > 1, we generated the data from the model

Y ∗
= α + β1X1 + β2X2 + γ (X2

1 + X2
2 ) + ε, Y = max{Y ∗, 0}. (4.2)

In the simulation, (X1, X2) is from a bivariate normal distribution with 0 mean vector, and identity covariance matrix,
ε ∼ N(0, σ 2

ε ), the true parameters are chosen to be α = β1 = β2 = σ 2
ε = 1. We choose the product of two standard

normal density functions as the kernel function, and h = n−1/7 as the bandwidth. Data from the model with γ = 0 are used
to study the empirical size, while data from the models with γ = 0.1, 0.2, 0.3, 0.5 are used to study the empirical powers.
In the current setup, we can see that theoretically P(ε ≤ −1 − X1 − X2) ≈ 28% observations of Y ∗ are truncated below 0
when γ = 0.
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Table 2
Optimal weights.

Test I Test II
100 300 500 100 300 500

γ = 0.0 0.007 0.014 0.014 0.036 0.018 0.028
γ = 0.1 0.016 0.078 0.213 0.019 0.057 0.117
γ = 0.2 0.077 0.584 0.877 0.065 0.358 0.654
γ = 0.3 0.267 0.942 0.991 0.157 0.763 0.963
γ = 0.5 0.715 0.987 0.994 0.611 0.994 1.000

Table 3
d = 2. Empirical powers.

100 300 500 100 300 500

γ = 0.0 Test I 0.002 0.008 0.010 0.040 0.035 0.055
Test II 0.008 0.012 0.006 0.050 0.065 0.060

γ = 0.1 Test I 0.034 0.158 0.283 0.075 0.140 0.225
Test II 0.010 0.023 0.038 0.085 0.080 0.095

γ = 0.2 Test I 0.247 0.838 0.985 0.270 0.600 0.900
Test II 0.021 0.090 0.207 0.065 0.180 0.350

γ = 0.3 Test I 0.690 0.999 1.000 0.580 0.970 1.000
Test II 0.036 0.235 0.494 0.110 0.385 0.645

γ = 0.5 Test I 0.997 1.000 1.000 0.980 1.000 1.000
Test II 0.102 0.622 0.948 0.375 0.860 1.000

Table 4
d = 2. Empirical powers when testing simple null hypothesis.

d = 1 d = 2
100 300 500 100 300 500

γ = 0.0 0.038 0.043 0.046 0.047 0.057 0.053
γ = 0.1 0.075 0.126 0.189 0.117 0.302 0.524
γ = 0.2 0.195 0.557 0.847 0.438 0.962 0.998
γ = 0.3 0.454 0.958 0.999 0.859 1.000 1.000
γ = 0.5 0.922 1.000 1.000 1.000 1.000 1.000

The simulation results for Test I and Test II are presented in the left panel of Table 3. The test again appears conservative,
and the power increases with increasing sample size. We also did some simulations when X1 and X2 are weakly and
moderately correlated. The results are not reported here because of their similarity to the left panel of Table 3. It is easily
seen that Test II is less powerful than Test I. Similar to the one dimensional case, we also conduct a parametric bootstrap
simulation and the results are shown in the right panel of Table 3. Clearly, the nominal level 0.05 is preserved in the bootstrap
simulation and the power is much larger than the one shown in the left panel of Table 3.

For comparison purposes, a simulation study for simple null hypotheses based on Test I is also conducted. Using the same
setups as in Simulation 1 and 2, but assuming that α = β = β1 = β2 = σ 2

ε = 1 are all known in the null models, we obtain
the simulation results as shown in Table 4. Similar patterns as in the previous tables are also appeared in Table 4, but the
empirical level is much closer to the nominal level 0.05 in all cases.

We also made a comparison study with Song and Zhang [24]’s (SZ) test procedure, which can be viewed as a variant of
HM-test in which the weight function is so chosen that the denominator is not present in the test statistic, and the results
are mixed. Based on the model (2.1) and the critical values from the normal theory, if all the parameters are unknown, then
the proposed test is slightly more powerful than the SZ test when d = 1, but less powerful for the case of d = 2. If bootstrap
critical values are used, then the SZ test is more powerful than the KSL test. If only truncation information is used, then the
KSL test outperforms the SZ test for both d = 1 and d = 2 cases. This is also true when testing the simple hypotheses.

We also conducted a finite sample comparison study between the HM test, the D-test described in Section 3, and the
test proposed in this paper corresponding to w(x) = 1, labeled as the KSL-test, using the same model as in Simulation 1.
The bandwidth h = n−2.3/5 is used in the simulation for all three tests, with such a choice, nh2

→ ∞, and nh2
√
h → 0.

The simulation results are shown in Table 5. In addition to sample size 100, 300, 500, we also conduct the simulation for
n = 800, 1000. The simulation results show that, when the tests are based on model (2.2), the empirical level of the D-test
is much smaller than those of KSL-test and HM-test, which indicates that the former test is more conservative than the
latter two. As far as the power is concerned, the HM-test performs somewhat better than the KSL-test, and the KSL-test is
more powerful than the D-test. A similar pattern appears when the tests are constructed from the model (2.3), with a few
exceptions between the KSL-test and D-test when γ = 0.3, 0.5 and the sample sizes are around 800 and 1000. As expected,
all the tests based onmodel (2.2) are more powerful than the ones based onmodel (2.3). Although the KSL-test is somewhat
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Table 5
Comparisons between HM, KSL, and D-tests.

Test I Test II
100 300 500 800 1000 100 300 500 800 1000

HM-Test

γ = 0.0 0.023 0.031 0.040 0.044 0.039 0.023 0.017 0.032 0.037 0.034
γ = 0.1 0.028 0.064 0.078 0.155 0.198 0.026 0.042 0.065 0.074 0.084
γ = 0.2 0.099 0.346 0.626 0.897 0.964 0.037 0.137 0.235 0.485 0.594
γ = 0.3 0.250 0.861 0.985 1.000 1.000 0.079 0.368 0.679 0.932 0.978
γ = 0.5 0.835 0.999 1.000 1.000 1.000 0.262 0.892 0.996 1.000 1.000

KSL-Test

γ = 0.0 0.026 0.029 0.031 0.026 0.034 0.025 0.024 0.026 0.035 0.036
γ = 0.1 0.026 0.059 0.061 0.092 0.113 0.021 0.033 0.054 0.050 0.039
γ = 0.2 0.098 0.252 0.408 0.659 0.783 0.031 0.070 0.093 0.154 0.200
γ = 0.3 0.210 0.702 0.939 0.997 0.999 0.048 0.117 0.237 0.394 0.494
γ = 0.5 0.791 0.998 1.000 1.000 1.000 0.096 0.372 0.649 0.900 0.951

D-Test

γ = 0.0 0.007 0.009 0.008 0.013 0.011 0.008 0.009 0.014 0.021 0.027
γ = 0.1 0.004 0.012 0.019 0.047 0.055 0.004 0.011 0.026 0.034 0.026
γ = 0.2 0.016 0.069 0.204 0.417 0.582 0.003 0.025 0.053 0.110 0.182
γ = 0.3 0.043 0.336 0.656 0.922 0.976 0.009 0.053 0.141 0.365 0.533
γ = 0.5 0.249 0.849 0.977 0.997 1.000 0.016 0.243 0.616 0.942 0.987

inferior to the HM-test in this limited simulation, it is still a competitive candidate for model checking due to its relative
computational ease, especially in the case when the number of predictors d is large.

Another interesting phenomenon found in the above simulation study is that with the smaller bandwidth h = n−2.3/5,
the empirical levels are much closer to the nominal level 0.05 compared to the ones using the larger bandwidth h = n−1/5.

5. Proofs of the main results

The proof of Theorem 3.1 is facilitated by the lemmas stated below.

Lemma 5.1. Under condition (C1), aQ0(−a) + Q1(−a) =


∞

−a[1 − Fε(u)]du, for all a ∈ R.

Proof. (C1) implies E|ε| < ∞. Hence lima→∞ a[1 − Fε(a)] = 0. This fact and integration by parts shows

aQ0(−a) + Q1(−a) = a[1 − Fε(−a)] +


∞

−a
ufε(u)du

= a[1 − Fε(−a)] −


∞

−a
ud[1 − Fε(u)]

= a[1 − Fε(−a)] − u[1 − Fε(u)]
∞
−a

+


∞

−a
[1 − Fε(u)]du

=


∞

−a
[1 − Fε(u)]du.

Hence the lemma. �

Lemma 5.2. Under condition (C1), there exists a constant B such that,

|g(−m(x, θ1)) − g(−m(x, θ2)) − [m(x, θ1) − m(x, θ2)]Q0(−m(x, θ2))| ≤ B[m(x, θ1) − m(x, θ2)]2, ∀ x ∈ Rd.

Proof. A Taylor expansion of g function and an application of Lemma 5.1, together with the boundedness of fε , imply the
result. �

To find out the asymptotic distribution of the test statistic, we also need Theorem 1 of Hall [10] which is reproduced here
for the sake of completeness.

Lemma 5.3. Let Zi, i = 1, 2, . . . , n be i.i.d. random vectors, and let

Un =


1≤i<j≤n

Hn(Zi, Zj), Mn(x, y) = EHn(Z1, x)Hn(Z1, y),
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where Hn is a sequence of measurable functions symmetric under permutation, with

E[Hn(Z1, Z2)|Z1] = 0, a.s. and EH2
n (Z1, Z2) < ∞ for each n ≥ 1.

If [EM2
n (Z1, Z2) + n−1H4

n (Z1, Z2)]/[EH
2
n (Z1, Z2)]

2
→ 0, then Un is asymptotically normally distributed with mean zero and

variance n2EH2
n (Z1, Z2)/2.

Proof of Theorem 3.1. Let ξi = Yi − g(Xi, θ0), Kh(y) := h−dK(y/h), and wij := w(Xi)w(Xj), 1 ≤ i, j ≤ n. Then
ξ̂i = Yi − g(Xi, θ̂n) = ξi − [g(Xi, θ̂n) − g(Xi, θ0)]. Hence Vn can be written as the sum of the following three terms

V1n =
1

n(n − 1)


i≠j

Kh(Xi − Xj)ξiξjwij,

V2n = −
2

n(n − 1)


i≠j

Kh(Xi − Xj)ξi[g(Xj, θ̂n) − g(Xj, θ0)]wij,

V3n =
2

n(n − 1)


i≠j

Kh(Xi − Xj)[g(Xi, θ̂n) − g(Xi, θ0)][g(Xj, θ̂n) − g(Xj, θ0)]wij.

Denote Zi = (Xi, ξi), V1n can be written in a U-statistic form with

Hn(Zi, Zj) = Kh(Xi − Xj)ξiξjwij.

Under the null hypothesis, E[Hn(Z1, Z2)|Z1] = 0, so V1n is a degenerate U-statistic. We shall apply Lemma 5.3 to show the
asymptotic normality of V1n. For this purpose, we need to investigate the asymptotic behavior of EM2

n (Z1, Z2), EH
4
n (Z1, Z2),

and EH2
n (Z1, Z2), where Mn(x, y) = EHn(Z1, x)Hn(Z1, y) is defined as in Lemma 5.3. Consider

EM2
n (Z1, Z2) = E(E[Hn(Z3, Z1)Hn(Z3, Z2)|Z1, Z2])2

= E


E


1
h2d

K

X3 − X1

h


K

X3 − X2

h


w(X1)w(X2)w

2(X3)ξ1ξ2ξ
2
3

Z1, Z2
2

=
1
h4d

E


ξ1ξ2w(X1)w(X2)


K

x3 − X1

h


K

x3 − X2

h


w2(x3)τ 2(x3)fX (x3)dx3

2

=
1
h2d


τ 2(x1)τ 2(x2)w2(x1)w2(x2)

×


K(u)K


u +

x1 − x2
h


w2(x1 + hu) · τ 2(x1 + hu)fX (x1 + hu)du

2
fX (x1)fX (x2)dx1dx2

=
1
hd

 
K(u)K(u + v)du

2
dv


[τ 2(x)]4w8(x)f 4X (x)dx + o(1/hd).

For EH2
n (Z1, Z2), we have

EH2
n (Z1, Z2) = E(E[H2

n (Z1, Z2)|X1, X2])

=
1
h2d


K 2

x1 − x2

h


τ 2(x1)τ 2(x2)w2(x1)w2(x2)fX (x1)fX (x2)dx1dx2

=
1
hd


K 2(u)du


(τ 2(x))2w4(x)f 2X (x)dx + o(1/hm).

Similarly,

EH4
n (Z1, Z2) =

1
h3d


K 4(u)du


(τ 2(x))4w8(x)f 2X (x)dx + o(1/h3d).

Therefore, from (C6), we obtain

EM2
n (Z1, Z2) + n−1EH4

n (Z1, Z2)
[EH2

n (Z1, Z2)]2
=

O(1/hd) + O(1/(nh3d))

O(1/h2d)
= O(hd) + O(1/(nhd)) → 0.

Hence Lemma 5.3 is applicable and

nhd/2V1n →D N(0, σ 2), (5.1)

where σ 2 is defined in (2.5).
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Now consider V2n. Let

dni = g(Xj, θ̂n) − g(Xj, θ0) − [m(Xi, θ̂n) − m(Xi, θ0)]Q0(−m(Xi, θ0)), (5.2)

δni = m(Xi, θ̂n) − m(Xi, θ0) − (θ̂n − θ0)
′ṁ(Xi, θ0). (5.3)

Then, V2n can be written as the sum V2n1 + V2n2, where

V2n1 = −
2

n(n − 1)


i≠j

Kh(Xi − Xj)ξidnjwij,

V2n2 = −
2

n(n − 1)


i≠j

Kh(Xi − Xj)ξi[m(Xj, θ̂n) − m(Xj, θ0)]Q0(−m(Xj, θ0))wij.

Applying Lemma 5.2 for θ1 = θ̂n, θ2 = θ0, and x = Xi, i = 1, 2, . . . , n, we have

|V2n1| ≤
4B

n(n − 1)


i≠j

Kh(Xi − Xj)|ξi|δ
2
njwij +

4B
n(n − 1)


i≠j

Kh(Xi − Xj)|ξi|[(θ̂n − θ0)
′ṁ(Xj, θ0)]

2wij

= An1 + An2.

By Condition (C4), An1 is bounded above by

Op


1
n2


·

1
n(n − 1)


i≠j

Kh(Xi − Xj)|ξi|wij.

Note that

1
n(n − 1)


i≠j

Kh(Xi − Xj)|ξi|wij = Op(1).

Therefore, nhd/2An1 = op(1) from Condition (C6). For An2, we have

nhd/2An2 ≤ nhd/2
∥θ̂n − θ0∥

2
·

4B
n(n − 1)


i≠j

Kh(Xi − Xj)|ξi|∥ṁ(Xj, θ0)∥
2wij = op(1)

by the
√
n-consistency of θ̂n, and

1
n(n − 1)


i≠j

Kh(Xi − Xj)|ξi|∥ṁ(Xj, θ0)∥
2wij = Op(1).

Hence

nhd/2V2n1 = op(1). (5.4)

Adding and subtracting (θ̂n − θ0)
′ṁ(Xj, θ0) from m(Xj, θ̂n) − m(Xj, θ0), V2n2 can be written as the sum of the following two

terms

Bn1 = −
2

n(n − 1)


i≠j

Kh(Xi − Xj)ξiδnjQ0(−m(Xj, θ0))wij,

Bn2 = −
2

n(n − 1)


i≠j

Kh(Xi − Xj)ξi(θ̂n − θ0)
′ṁ(Xj, θ0)Q0(−m(Xj, θ0))wij.

By Condition (C4),

|Bn1| ≤ sup
1≤i≤n

|δni| ·
2

n(n − 1)


i≠j

Kh(Xi − Xj)|ξi|wij = Op(1/n),

thus, nhd/2Bn1 = op(1). As for Bn2, it is easily seen that

|Bn2| ≤ ∥θ̂n − θ0∥ ·

 2
n(n − 1)


i≠j

Kh(Xi − Xj)ξim(Xj, θ0)Q0(−m(Xj, θ0))

wij.
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Using the similar method as in proving Lemma 3.3b in [32], one can show that the second norm in the above inequality is
of the order of Op(1/

√
n), which, together with the

√
n-consistency of θ̂n, implies nhd/2Bn2 = op(1). Thus,

nhd/2V2n2 = op(1). (5.5)

From (5.4) and (5.5), we obtain

nhd/2V2n = op(1). (5.6)

The proof of nhd/2V3n = op(1) follows the same thread as above, hence is omitted here for the sake of brevity.
To show that σ̂ 2 defined in (2.6), it is sufficient to show that

2
n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


(ξ̂ 2

i ξ̂ 2
j − ξ 2

i ξ 2
j )w2(Xi)w

2(Xj) = op(1), (5.7)

2
n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξ 2
i ξ 2

j w2(Xi)w
2(Xj) = σ 2

+ op(1). (5.8)

Adding and subtracting ξi from ξ̂i, ξj from ξ̂j, the term on the left hand side of (5.7) can bewritten as the sum of the following
five terms,

2
n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


(ξ̂i − ξi)

2(ξ̂j − ξj)
2w2(Xi)w

2(Xj),

8
n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξiξj(ξ̂i − ξi)(ξ̂j − ξj)w

2(Xi)w
2(Xj),

8
n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξi(ξ̂i − ξi)(ξ̂j − ξj)

2w2(Xi)w
2(Xj),

4
n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξ 2
i (ξ̂j − ξj)

2w2(Xi)w
2(Xj),

8
n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξiξ

2
j (ξ̂i − ξi)w

2(Xi)w
2(Xj). (5.9)

We only show that (5.9) is the order of op(1). Note that

ξ̂i − ξi = −dni − δniQ0(−m(Xi, θ0)) − (θ̂n − θ0)
′ṁ(Xi, θ0)Q0(−m(Xi, θ0)),

so it suffices to show the following three terms are all of the order op(1),

−
8

n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξiξ

2
j dniw

2(Xi)w
2(Xj), (5.10)

−
8

n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξiξ

2
j δniQ0(−m(Xi, θ0))w

2(Xi)w
2(Xj), (5.11)

−
8(θ̂n − θ0)

′

n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


ξiξ

2
j ṁ(Xi, θ0)Q0(−m(Xi, θ0))w

2(Xi)w
2(Xj). (5.12)

For any continuous function L1(x), L2(x) such that E[L21(X) + L22(X)] < ∞, we can show that

E


1

n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


|ξi|ξ

2
j L1(Xi)L2(Xj)


= 2E

1
hd

K 2

X1 − X2

h


|ξ1|ξ

2
2 L1(X1)L2(X2)

≤


K 2(u)du


τ 3(x)L1(x)L2(x)f 2X (x)dx + o(1).
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If the leading term in the above upper bound is finite, then by the Markov inequality,
1

n(n − 1)

n
i≠j

1
hd

K 2

Xi − Xj

h


|ξi|ξ

2
j L1(Xi)L2(Xj)


= Op(1).

Because sup1≤i≤n |dni| and sup1≤i≤n |δni| are both negligible, it is easily seen that (5.10)–(5.12) are all of the order of op(1).
The proof of (5.8) is similar to the proof of Lemma 3.3(e) in Zheng [32]. This completes the proof of the theorem. �

Proof of Theorem 3.2. The proof is similar to that of Theorem 3.1. We only outline the main steps here for the sake of
brevity.

Substituting Yi − gγ (Xi) + gγ (Xi) − g(Xi, θ̂n) = ξi + gγ (Xi) − g(Xi, θ̂n) for ξ̂i and Yj − gγ (Xj) + gγ (Xj) − g(Xj, θ̂n) =

ξj + gγ (Xj) − g(Xj, θ̂n) for ξ̂j in Vn, Vn can be written as the sum of the following three terms

V a
1n =

1
n(n − 1)


i≠j

Kh(Xi − Xj)ξiξjwij,

V a
2n =

1
n(n − 1)


i≠j

Kh(Xi − Xj)ξi[gγ (Xj) − g(Xj, θ̂n)]wij,

V a
3n =

1
n(n − 1)


i≠j

Kh(Xi − Xj)[gγ (Xi) − g(Xi, θ̂n)][gγ (Xj) − g(Xj, θ̂n)]wij.

V a
3n can be further written as the sum V a

3n1 + V a
3n2 + V a

3n3, where

V a
3n1 =

1
n(n − 1)


i≠j

Kh(Xi − Xj)[gγ (Xi) − g(Xi, θa)][gγ (Xj) − g(Xj, θa)]wij,

V a
3n2 =

1
n(n − 1)


i≠j

Kh(Xi − Xj)[gγ (Xi) − g(Xi, θa)][g(Xj, θa) − g(Xj, θ̂n)]wij,

V a
3n3 =

1
n(n − 1)


i≠j

Kh(Xi − Xj)[g(Xi, θa) − g(Xi, θ̂n)][g(Xj, θa) − g(Xj, θ̂n)]wij.

One can show thatV a
3n1 =


K 2(u)du·


[gγ (x)−g(x, θa)]2w2(x)f 2X (x)dx+op(1), andV a

3n2 = op(1), V a
3n3 = op(1), V a

2n = op(1).
Eventually, one can show that

nhd/2Vn = nhd/2V a
1n + nhd/2


K 2(u)du ·


[gγ (x) − g(x, θa)]2w2(x)f 2X (x)dx + op(nhd/2).

Finally, we can show that

σ̂ 2
= 2


K 2(u)du ·


[τ 2(x) + [gγ (x) − g(x, θa)]2]2w4(x)f 2X (x)dx + op(1).

This completes the proof. �

Proof of Theorem 3.3. Now, define Y ∗L
i = m(Xi, θ0) + εi, Y L

i = max{Y ∗L
i , 0}, and Wi = Yi − Y L

i . The elementary inequality
max{a, 0} = (a + |a|)/2 implies Wi = [δ(Xi) + ∆n(Xi)]/2

√
nhd/2 with

∆n(Xi) =

√nhd/2m(Xi, θ0) + δ(Xi) +

√

nhd/2εi

− √nhd/2m(Xi, θ0) +

√

nhd/2εi

 .
Define ξ̂ L

i = Y L
i − g(Xi, θ̂n). Then ξ̂i = ξ̂ L

i + Wi and Vn can be written as a sum of the following terms

V L
1n =

1
n(n − 1)hd


i≠j

K

Xi − Xj

h


ξ̂ L
i ξ̂

L
j wij,

V L
2n =

2
n(n − 1)hd


i≠j

K

Xi − Xj

h


ξ̂ L
i Wjwij,

V L
3n =

1
n(n − 1)hd


i≠j

K

Xi − Xj

h


WiWjwij.

Similar to the proof of Theorem 3.1, nhd/2V L
1n ⇒ N(0, σ 2), where σ 2 is defined in (2.5).
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It is easily seen that δ(x) + ∆n(x) = δ(x)I(m(x, θ0) + ε > 0). By the independence of ε and X1, X2, EV L
3n equals

1
hd

EK

X1 − X2

h


W1W2w(X1)w(X2)

=
1

nh3d/2


K

x1 − x2

h


Q0(−m(x1, θ0))Q0(−m(x2, θ0))δ(x1)δ(x2)w(x1)w(x2)fX (x1)fX (x2)dx1dx2

=
1

nhd/2


K(u)Q0(−m(x + hu, θ0))Q0(−m(x, θ0))δ(x + hu)δ(x)w(x + hu)w(x)fX (x + hu)fX (x)dxdu

=
1

nhd/2


Q 2
0 (−m(x, θ0))δ2(x)w2(x)f 2X (x)dx + o


1

nhd/2


.

The last integral is exactly the µ defined in Theorem 3.3. Therefore,

nhd/2EV L
3n → µ. (5.13)

Now consider Var(V L
3n). For convenience, let

Sij = K

Xi − Xj

h


WiWjwij − EK


Xi − Xj

h


WiWjwij.

A tedious but simple derivation leads to

Var(V L
3n) =

4n(n − 1)
[n(n − 1)hd]2

ES212 +
8n(n − 1)(n − 2)
3![n(n − 1)hd]2

ES12S13.

By the Cauchy–Schwarz inequality, |ES12S13| ≤ ES212, and hence

Var(V L
3n) ≤


4n(n − 1)

[n(n − 1)hd]2
+

8n(n − 1)(n − 2)
3![n(n − 1)hd]2


ES212.

One can show that

ES212 = E

K

X1 − X2

h


W1W2w(X1)w(X2) − EK


X1 − X2

h


W1W2w(X1)w(X2)

2
≤ EK 2


X1 − X2

h


W 2

1W
2
2 w2(X1)w

2(X2).

Since |Wi| ≤ |δ(Xi)|/
√
nhd/2, for each i, we have

ES212 ≤
1

n2hd
EK 2


X1 − X2

h


δ2(X1)δ

2(X2)w
2(X1)w

2(X2) = O


1
n2


.

Therefore,

Var(V L
3n) =


4n(n − 1)

[n(n − 1)hd]2
+

8n(n − 1)(n − 2)
3![n(n − 1)hd]2


·
1
n2

= O


1
n3h2d


,

which implies

V L
3n − EV L

3n = Op


1

√
n3h2d


. (5.14)

From (5.13) and (5.14), one now readily obtains

nhd/2V L
3n = nhd/2

[V L
3n − EV L

3n] + nhd/2EV L
3n →p µ.

Similarly, one can show that nhd/2V L
2n = op(1), and σ̂ 2

→p σ 2. The details are omitted for the sake of brevity. Summarizing
the above arguments, we can finish the proof of Theorem 3.3. �
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