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Univariate Normal Density

f(x) =
1

√
2πσ

e
− (x−µ)2

σ2 , x ∈ R, µ ∈ R, σ ∈ R+.

If a random variable X has the above density function, then X ∼ N(µ, σ2).
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Multivariate Normal Density

Let X = (X1, . . . , Xp) be a p-dimensional vector.

We say X ∼ Np(µ,Σ), if it’s density function has the form

f(x) =
1

(2π)p/2|Σ|1/2
e−

(x−µ)′Σ−1(x−µ)
2 ,

where
−∞ < xi <∞, i = 1, 2, . . . , p;
−∞ < µi <∞, i = 1, 2, . . . , p;
Σ > 0.
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Example (Bivariate normal density) Let p = 2.
µ1 = EX1, µ2 = EX2;
σ11 = Var(X1), σ22 = Var(X2), σ12 = Cov(X1, X2);
ρ12 = Corr(X1, X2).

The density function of X = (X1, X2)′ has the form

f(x1, x2) =
1

2π
√
σ11σ22(1− ρ2

12)
·

exp
{
−

1
2(1− ρ2

12)

[(
x1 − µ1
√
σ11

)2
+
(
x2 − µ2
√
σ22

)2
− 2ρ12

(
x1 − µ1
√
σ11

)(
x2 − µ2
√
σ22

)]}
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Example (Bivariate Normal Density Plots)

σ11 = σ22, ρ12 = 0.
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Example (Bivariate Normal Density Plots)

σ11 = σ22, ρ12 = 0.75.
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Contours of Normal Density

Contours of Constant Normal Density
Contours of constant density for the p-dimensional normal distribution are
ellipsoids defined by x such that

(x− µ)′Σ−1(x− µ) = c2.

These ellipsoids are centered at µ and have axes ±c
√
λiei, where Σei = λiei,

i = 1, 2, . . . , p.

Example (Contours of the bivariate normal density) Suppose we have a
bivariate normal distribution with σ11 = σ22. The axes of the contour ellipses of
constant density are determined by

±c
√
σ11 + σ12

[ 1√
2

1√
2

]
and ± c

√
σ11 − σ12

[ 1√
2

− 1√
2

]
.
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Linear Combination of Random Variables from An MVN Random Vector

If X is distributed as Np(µ,Σ), then any linear combination of variables
a′X = a1X1 + · · ·+ apXp is distributed as N(a′µ,a′Σa). Also, if a′X is
distributed as N(a′µ,a′Σa) for every a, then X must be Np(µ,Σ).

Several Linear Combinations of Random Variables from An MVN Random Vector

If X is distributed as Np(µ,Σ), the q linear combinations

AX =

a11X1 + · · ·+ a1pXp
a21X1 + · · ·+ a2pXp

· · · · · ·
aq1X1 + · · ·+ aqpXp


are distributed as Nq(Aµ,AΣA′). Also for a p× 1 vector d, X + d is distributed
as Np(µ+ d,Σ).
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Subvector of An MVN Random Vector
All subsets of a multivariate normal random vector X are normally distributed. If
we respectively partition X, its mean vector µ, and its covariance matrix Σ as

Xp×1 =
[

X1
X2

]
, µp×1 =

[
µ1
µ2

]
,

and
Σ =

[
Σ11 Σ12
Σ21 Σ22

]
,

then X1 is distributed as Nq(µ1,Σ11).

Independence of MVN Random Vectors

(a). If X1 and X2 are independent, then Cov(X1, X2) = 0.
(b). If [

X1
X2

]
∼ Nq1+q2

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
,

then X1 and X2 are independent if and only if Σ12 = 0.
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Conditional Distributions
Let [

X1
X2

]
∼ Nq1+q2

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
and Σ22 > 0. Then the conditional distribution of X1, given that X2 = x2, is
normal and has

Mean = µ1 + Σ12Σ−1
22 (X2 − µ2),

Covariance = Σ11 − Σ12Σ−1
22 Σ21.
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Quadratic Forms of MVN Random Vectors

Let X be distributed as Np(µ,Σ) with |Σ| > 0. Then
(a). (X− µ)′Σ−1(X− µ) is distributed as χ2

p, where χ2
p denotes the

chi-square distribution with p degrees of freedom.
(b). The Np(µ,Σ) distribution assigns probability 1− α to the solid ellipsoid
{x : (x− µ)′Σ−1(x− µ) ≤ χ2

p(α)}, where χ2
p(α) denotes the upper 100α-th

percentile of the χ2
p distribution.
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Now let X1,X2, . . . ,Xn be n random vectors with dimension p× 1.

Consider the following linear combinations

V1 = c1X1 + c2X2 + · · ·+ cnXn, V2 = b1X1 + b2X2 + · · ·+ bnXn

Linear Combinations of Several MVN Random Vectors

Suppose X1,X2, . . . ,Xn are mutually independent with Xj ∼ Np(µj ,Σ). Then

V1 ∼ Np

(
n∑
j=1

cjµj ,

(
n∑
j=1

c2j

)
Σ

)
.

Moreover,[
V1
V2

]
∼ N2p

[∑n

j=1 cjµj∑n

j=1 bjµj

]
,

(∑n

j=1 c
2
j

)
Σ (b′c)Σ

(b′c)Σ
(∑n

j=1 b
2
j

)
Σ
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The Multivariate Normal Likelihood

Let X1,X2, . . . ,Xn be n p× 1 vectors from Np(µ,Σ).

The joint density function has the form of
n∏
j=1

{
1

(2π)p/2|Σ|1/2
e−(xj−µ)′Σ−1(xj−µ)/2

}
(1)

=
1

(2π)np/2|Σ|n/2
e
−
∑n

j=1
(xj−µ)′Σ−1(xj−µ)/2

(2)

As a function of µ and Σ, the joint density function is called the likelihood
function. Denoted by L(µ,Σ).

The parameter values that maximize the likelihood function is called the
maximum likelihood estimates (MLE).
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MLE of µ and Σ

MLE of µ and Σ

Let X1,X2, . . . ,Xn be a random sample from Np(µ,Σ). Then

µ̂ = X̄, Σ̂ =
1
n

n∑
j=1

(Xj − X̄)(Xj − X̄)′ =
n− 1
n

S

are the maximum likelihood estimators of µ and Σ, respectively. Their observed
values x̄ and (1/n)

∑n

j=1(xj − x̄)(xj − x̄)′ are called the maximum likelihood
estimates of µ and Σ.

Remarks: The value of the maximum likelihood is

L(µ̂, Σ̂) =
1

(2πe)np/2
|Σ̂|−n/2 = constant× (Genralized Variance)−n/2.
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Wishart Distribution

Definition: Suppose Z1,Z2, . . . ,Zm are i.i.d. from Np(0,Σ). Then
m∑
j=1

ZiZ′i ∼Wm(·|Σ),

where Wm(·|Σ) denotes the Wishart distribution with degrees of freedom m.

Properties:

If X is distributed as Wm1 (X|Σ), Y is distributed as Wm2 (Y|Σ), X and Y
are independent, then X + Y is distributed as Wm1+m2 (X1 +X2|Σ).
If X is distributed as Wm(X|Σ), then CXC′ is distributed as
Wm(CXC′|CΣC′).
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Sampling Distribution of X̄ and S

Sampling Distribution of MLE
Let X1, . . . ,Xn be random sample of size n from a p-variate normal distribution
with mean µ and covariance matrix Σ. Then

X̄ is distributed as Np(µ,Σ/n).
(n− 1)S is distributed as a Wishart distribution with n− 1 degrees of
freedom.
X̄ and S are independent.
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Large Sample Behavior of X̄ and S

Law of Large Numbers
Let X1,X2, . . . ,Xn be independent observations from a population X with mean
EX = µ. Then X̄ converges in probability to µ as n increases as n→∞.

The Central Limit Theorem
Let X1,X2, . . . ,Xn be independent observations from a population X with mean
EX = µ and finite covariance Σ. Then

√
n(X̄− µ) has an approximate Np(0,Σ)

distribution for large sample sizes. here n should also be large relative to p.

As a consequence of the central limit theorem, we have

n(X̄− µ)′S−1(X̄− µ) is approximately χ2
p.
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Evaluating Normality: Univariate Case

Evaluating Normality: Univariate Case

Dot diagrams, Histogram: Symmetry?
Numerical Checking: 3σ-rule.
When the sample size is large,

[x̄i −
√

sii, x̄i +√sii] has 68.3% observations;
[x̄i − 2√sii, x̄i + 2√sii] has 95.4% observations;
[x̄i − 3√sii, x̄i + 3√sii] has 99.7% observations;

QQ-plot, PP-plot, etc.
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Straightness Checking

The straightness of the QQ-plot can be measured by the correlation coefficient for
the QQ-plot:

rQ =

∑n

j=1(x(j) − x̄)(q(j) − q̄)√∑n

j=1(x(j) − x̄)2
∑n

j=1(q(j) − q̄)2
.

The hypothesis of normality will be rejected at level of significance α if rQ falls
below the appropriate value in the following Table.
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Assessing Normality: Multivariate Case

Note that under the normality assumption

{x : (x− µ)′Σ−1(x− µ) ≤ χ2
p(α)}

has probability 1− α.

So, we expect roughly 1− α of sample observations to lie in the ellipsoid given by

{x : (x− x̄)′S−1(x− x̄) ≤ χ2
p(α)}.
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Example (Checking bivariate normality): Consider the following data set
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Chi-Square Plot

For each observation xj , calculate

d2
j = (xj − x̄)′S−1(xj − x̄), j = 1, 2, . . . , n

Order d2
j from smallest to the largest as

d2
(1) ≤ d

2
(2) ≤ · · · ≤ d

2
(n).

Caculate qc,p((j − 0.5)/n) for j = 1, 2, . . . , n, where qc,p((j − 0.5)/n) is the
100(j − 0.5)/n quantile of the χ2

p.

Graph the pairs (qc,p((j − 0.5)/n), d2
j ), j = 1, 2, . . . , n.

If the normality assumption holds, then the plot should resemble a straight line
through the origin having slope 1.
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What are outliers?
Outliers are unusual observations that do not seem to belong to the pattern of
variability produced by the other observations.
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Detecting Multidimensional Outliers

Graphical Tools
dot plots, scatter plots,...
Numerical Tools

Standardized values
Calculate

zjk = xjk − x̄k√
skk

, j = 1, 2, . . . , n; k = 1, 2, . . . , p.

Guidelines: the observations with standardized values less than
−3(3.5) or greater than 3(3.5) might be considered as outliers.
Generalized squared distances
Calculate

dj = (xj − x)′S−1(xj − x), j = 1, 2, . . . , n.

Guideline: Very large dj ’s imply outliers.
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