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Univariate Normal Density

f(x) =
1

√
2πσ

e
− (x−µ)2

σ2 , x ∈ R, µ ∈ R, σ ∈ R+.

If a random variable X has the above density function, then X ∼ N(µ, σ2).
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Multivariate Normal Density

Let X = (X1, . . . , Xp) be a p-dimensional vector.

We say X ∼ Np(µ,Σ), if it’s density function has the form

f(x) =
1

(2π)p/2|Σ|1/2
e−

(x−µ)′Σ−1(x−µ)
2 ,

where
−∞ < xi <∞, i = 1, 2, . . . , p;
−∞ < µi <∞, i = 1, 2, . . . , p;
Σ > 0.
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Example (Bivariate normal density) Let p = 2.
µ1 = EX1, µ2 = EX2;
σ11 = Var(X1), σ22 = Var(X2), σ12 = Cov(X1, X2);
ρ12 = Corr(X1, X2).

The density function of X = (X1, X2)′ has the form

f(x1, x2) =
1

2π
√
σ11σ22(1− ρ2

12)
·

exp
{
−

1
2(1− ρ2

12)

[(
x1 − µ1
√
σ11

)2
+
(
x2 − µ2
√
σ22

)2
− 2ρ12

(
x1 − µ1
√
σ11

)(
x2 − µ2
√
σ22

)]}
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Example (Bivariate Normal Density Plots)

σ11 = σ22, ρ12 = 0.
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Example (Bivariate Normal Density Plots)

σ11 = σ22, ρ12 = 0.75.
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Contours of Normal Density

Contours of Constant Normal Density
Contours of constant density for the p-dimensional normal distribution are
ellipsoids defined by x such that

(x− µ)′Σ−1(x− µ) = c2.

These ellipsoids are centered at µ and have axes ±c
√
λiei, where Σei = λiei,

i = 1, 2, . . . , p.

Example (Contours of the bivariate normal density) Suppose we have a
bivariate normal distribution with σ11 = σ22. The axes of the contour ellipses of
constant density are determined by

±c
√
σ11 + σ12

[ 1√
2

1√
2

]
and ± c

√
σ11 − σ12

[ 1√
2

− 1√
2

]
.
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Linear Combination of Random Variables from An MVN Random Vector

If X is distributed as Np(µ,Σ), then any linear combination of variables
a′X = a1X1 + · · ·+ apXp is distributed as N(a′µ,a′Σa). Also, if a′X is
distributed as N(a′µ,a′Σa) for every a, then X must be Np(µ,Σ).

Several Linear Combinations of Random Variables from An MVN Random Vector

If X is distributed as Np(µ,Σ), the q linear combinations

AX =

a11X1 + · · ·+ a1pXp
a21X1 + · · ·+ a2pXp

· · · · · ·
aq1X1 + · · ·+ aqpXp


are distributed as Nq(Aµ,AΣA′). Also for a p× 1 vector d, X + d is distributed
as Np(µ+ d,Σ).
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Subvector of An MVN Random Vector
All subsets of a multivariate normal random vector X are normally distributed. If
we respectively partition X, its mean vector µ, and its covariance matrix Σ as

Xp×1 =
[

X1
X2

]
, µp×1 =

[
µ1
µ2

]
,

and
Σ =

[
Σ11 Σ12
Σ21 Σ22

]
,

then X1 is distributed as Nq(µ1,Σ11).

Independence of MVN Random Vectors

(a). If X1 and X2 are independent, then Cov(X1, X2) = 0.
(b). If [

X1
X2

]
∼ Nq1+q2

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
,

then X1 and X2 are independent if and only if Σ12 = 0.
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Conditional Distributions
Let [

X1
X2

]
∼ Nq1+q2

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
and Σ22 > 0. Then the conditional distribution of X1, given that X2 = x2, is
normal and has

Mean = µ1 + Σ12Σ−1
22 (X2 − µ2),

Covariance = Σ11 − Σ12Σ−1
22 Σ21.
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Quadratic Forms of MVN Random Vectors

Let X be distributed as Np(µ,Σ) with |Σ| > 0. Then
(a). (X− µ)′Σ−1(X− µ) is distributed as χ2

p, where χ2
p denotes the

chi-square distribution with p degrees of freedom.
(b). The Np(µ,Σ) distribution assigns probability 1− α to the solid ellipsoid
{x : (x− µ)′Σ−1(x− µ) ≤ χ2

p(α)}, where χ2
p(α) denotes the upper 100α-th

percentile of the χ2
p distribution.
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Now let X1,X2, . . . ,Xn be n random vectors with dimension p× 1.

Consider the following linear combinations

V1 = c1X1 + c2X2 + · · ·+ cnXn, V2 = b1X1 + b2X2 + · · ·+ bnXn

Linear Combinations of Several MVN Random Vectors

Suppose X1,X2, . . . ,Xn are mutually independent with Xj ∼ Np(µj ,Σ). Then

V1 ∼ Np

(
n∑
j=1

cjµj ,

(
n∑
j=1

c2j

)
Σ

)
.

Moreover,[
V1
V2

]
∼ N2p

[∑n

j=1 cjµj∑n

j=1 bjµj

]
,

(∑n

j=1 c
2
j

)
Σ (b′c)Σ

(b′c)Σ
(∑n

j=1 b
2
j

)
Σ


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The Multivariate Normal Likelihood

Let X1,X2, . . . ,Xn be n p× 1 vectors from Np(µ,Σ).

The joint density function has the form of
n∏
j=1

{
1

(2π)p/2|Σ|1/2
e−(xj−µ)′Σ−1(xj−µ)/2

}
(1)

=
1

(2π)np/2|Σ|n/2
e
−
∑n

j=1
(xj−µ)′Σ−1(xj−µ)/2

(2)

As a function of µ and Σ, the joint density function is called the likelihood
function. Denoted by L(µ,Σ).

The parameter values that maximize the likelihood function is called the
maximum likelihood estimates (MLE).

Weixing Song, Juan Du Workshop on Multivariate Analysis



18/33

Multivariate Normal Density Properties of Multivariate Normal Distribution Maximum Likelihood Estimation The Sampling Distribution of MLE Assessing the Normality Assumption Detecting Outliers

MLE of µ and Σ

MLE of µ and Σ

Let X1,X2, . . . ,Xn be a random sample from Np(µ,Σ). Then

µ̂ = X̄, Σ̂ =
1
n

n∑
j=1

(Xj − X̄)(Xj − X̄)′ =
n− 1
n

S

are the maximum likelihood estimators of µ and Σ, respectively. Their observed
values x̄ and (1/n)

∑n

j=1(xj − x̄)(xj − x̄)′ are called the maximum likelihood
estimates of µ and Σ.

Remarks: The value of the maximum likelihood is

L(µ̂, Σ̂) =
1

(2πe)np/2
|Σ̂|−n/2 = constant× (Genralized Variance)−n/2.
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Wishart Distribution

Definition: Suppose Z1,Z2, . . . ,Zm are i.i.d. from Np(0,Σ). Then
m∑
j=1

ZiZ′i ∼Wm(·|Σ),

where Wm(·|Σ) denotes the Wishart distribution with degrees of freedom m.

Properties:

If X is distributed as Wm1 (X|Σ), Y is distributed as Wm2 (Y|Σ), X and Y
are independent, then X + Y is distributed as Wm1+m2 (X1 +X2|Σ).
If X is distributed as Wm(X|Σ), then CXC′ is distributed as
Wm(CXC′|CΣC′).
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Sampling Distribution of X̄ and S

Sampling Distribution of MLE
Let X1, . . . ,Xn be random sample of size n from a p-variate normal distribution
with mean µ and covariance matrix Σ. Then

X̄ is distributed as Np(µ,Σ/n).
(n− 1)S is distributed as a Wishart distribution with n− 1 degrees of
freedom.
X̄ and S are independent.
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Large Sample Behavior of X̄ and S

Law of Large Numbers
Let X1,X2, . . . ,Xn be independent observations from a population X with mean
EX = µ. Then X̄ converges in probability to µ as n increases as n→∞.

The Central Limit Theorem
Let X1,X2, . . . ,Xn be independent observations from a population X with mean
EX = µ and finite covariance Σ. Then

√
n(X̄− µ) has an approximate Np(0,Σ)

distribution for large sample sizes. here n should also be large relative to p.

As a consequence of the central limit theorem, we have

n(X̄− µ)′S−1(X̄− µ) is approximately χ2
p.
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Evaluating Normality: Univariate Case

Evaluating Normality: Univariate Case

Dot diagrams, Histogram: Symmetry?
Numerical Checking: 3σ-rule.
When the sample size is large,

[x̄i −
√

sii, x̄i +√sii] has 68.3% observations;
[x̄i − 2√sii, x̄i + 2√sii] has 95.4% observations;
[x̄i − 3√sii, x̄i + 3√sii] has 99.7% observations;

QQ-plot, PP-plot, etc.
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Straightness Checking

The straightness of the QQ-plot can be measured by the correlation coefficient for
the QQ-plot:

rQ =

∑n

j=1(x(j) − x̄)(q(j) − q̄)√∑n

j=1(x(j) − x̄)2
∑n

j=1(q(j) − q̄)2
.

The hypothesis of normality will be rejected at level of significance α if rQ falls
below the appropriate value in the following Table.
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Assessing Normality: Multivariate Case

Note that under the normality assumption

{x : (x− µ)′Σ−1(x− µ) ≤ χ2
p(α)}

has probability 1− α.

So, we expect roughly 1− α of sample observations to lie in the ellipsoid given by

{x : (x− x̄)′S−1(x− x̄) ≤ χ2
p(α)}.
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Example (Checking bivariate normality): Consider the following data set
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Chi-Square Plot

For each observation xj , calculate

d2
j = (xj − x̄)′S−1(xj − x̄), j = 1, 2, . . . , n

Order d2
j from smallest to the largest as

d2
(1) ≤ d

2
(2) ≤ · · · ≤ d

2
(n).

Caculate qc,p((j − 0.5)/n) for j = 1, 2, . . . , n, where qc,p((j − 0.5)/n) is the
100(j − 0.5)/n quantile of the χ2

p.

Graph the pairs (qc,p((j − 0.5)/n), d2
j ), j = 1, 2, . . . , n.

If the normality assumption holds, then the plot should resemble a straight line
through the origin having slope 1.
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What are outliers?
Outliers are unusual observations that do not seem to belong to the pattern of
variability produced by the other observations.
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Detecting Multidimensional Outliers

Graphical Tools
dot plots, scatter plots,...
Numerical Tools

Standardized values
Calculate

zjk = xjk − x̄k√
skk

, j = 1, 2, . . . , n; k = 1, 2, . . . , p.

Guidelines: the observations with standardized values less than
−3(3.5) or greater than 3(3.5) might be considered as outliers.
Generalized squared distances
Calculate

dj = (xj − x)′S−1(xj − x), j = 1, 2, . . . , n.

Guideline: Very large dj ’s imply outliers.
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