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What are principal components?

Principal components of X1, X2, . . . , Xp are some special linear combinations of
these variables whose variability is close to the variability of X1, X2, . . . , Xp.

 

 

x2 

x1 

Why principal components?

Data reduction; Interpretation.

Note: “Analyses of principal components are more of a means to an end rather
than an end in themselves.”

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Let (X1, X2, . . . , Xp)′ be a p-dimensional random vector. Its covariance and the
correlation matrices are Σ and ρ, respectively.

Principal Components

The principal components of X = (X1, . . . , Xp)′ are the following p linear
combinations of X1, . . . , Xp

Y1 = a′1X = a11X1 + a12X2 + · · ·+ a1pXp

Y2 = a′2X = a21X1 + a22X2 + · · ·+ a2pXp

· · · · · · · · ·
Yp = a′pX = ap1X1 + ap2X2 + · · ·+ appXp

such that
Y1 = a′1X maximizes Var(a′1X) subject to a′1a1 = 1;
Y2 = a′2X maximizes Var(a′2X) subject to a′2a2 = 1 and Cov(a′2X,a′1X) = 0;
· · · · · · ;
Yp = a′pX maximizes Var(a′pX) subject to a′pap = 1 and Cov(a′pX,a′jX) = 0
for j = 1, 2, . . . , p− 1.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Population Principal Compoents

Let Σ be the covariance matrix of X = (X1, . . . , Xp)′. Its eigenvalue-eigenvector
pairs are (λ1, e1), . . . , (λp, ep), where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. Then the i-th
principal component is given by

Yi = eiX = ei1X1 + ei2X2 + · · ·+ eipXp, i = 1, 2, . . . , p.

With these choices,

Var(Yi) = e′iΣei = λi, Cov(Yi, Yk) = e′iΣek = 0,

i, k = 1, 2, . . . , p, i 6= k. If some λi’s are equal, the choices of the corresponding
coefficient vectors ei, and hence Yi are not unique.

Correlation Between PCA and Individual Variables

Let Y1 = e′1X, · · · , Yp = e′pX be the principal components obtained from the
covariance matrix Σ, then

ρi,k =
eik

√
λi√

σkk
, i, k = 1, 2, . . . , p.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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A Relationship between Variances and Eigenvalues

Let X = (X1, . . . , Xp)′ have covariance matrix Σ, with eigenvalue-eigenvector
pairs (λ1, e1), . . . , (λp, ep) and λ1 ≥ · · · ≥ λp ≥ 0. Let Y1 = e′1X, . . ., Yp = e′pX
be the principal components. Then

σ11 + σ22 + · · ·+ σpp =
p∑

i=1

Var(Xi) = λ1 + λ2 + · · ·+ λp =
p∑

i=1

Var(Yi).

Based on the above result, we have

Proportion of total population variance
due to the k-th principal component =

λk

λ1 + λ2 + · · ·+ λp

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Example 5.1 Suppose the random variables X1, X2, X3 have the covariance
matrix

Σ =

[
1 −2 0
−2 5 0
0 0 2

]
.

Find the principal components, and the correlation coefficients between each
variable and principal component.

See R-code

Weixing Song, Juan Du Workshop on Multivariate Analysis
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An Interpretation of Principal Components

Suppose X ∼ Np(µ,Σ). The contour of its density function is given by the
µ-centered ellipsoids

(x− µ)′Σ−1(x− µ) = c2

which have axes ±c
√
λiei, where (λi, ei) are the eigenvalue-eigenvector pairs of Σ,

i = 1, 2, . . . , p.

WLOG, assume that µ = 0.

Note that the ellipsoid can be also written as
1
λ1

(e′1x)2 +
1
λ2

(e′2x)2 + · · ·+
1
λp

(e′px)2 = c2.

Recall that e′1x, e′2x, . . . , e′px are the PCs of x. It is easy to see that the PCs lie in
the following ellipsoid

1
λ1
y2
1 +

1
λ2
y2
2 + · · ·+

1
λp
y2

p = c2.

That is, the principal components lie in the directions of the axes of a
constant density ellipsoid.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Principal Components for Standardized Variables

If X has mean µ and covariance matrix Σ, then the standardized vector
Z = V−1/2(X− µ) has mean 0 and covariance matrix ρ (which, indeed, is the
correlation matrix of X), where V = diag(σ11, σ22, · · · , σpp).

PCAs Based on Standardized Variables

Suppose (λ1, e1), . . . , (λp, ep) are the eigenvalue-eigenvector pairs for ρ with
λ1 ≥ · · · ≥ λp ≥ 0. The i-th principal component of the standardized variables
Z′ = [Z1, . . . , Zp] with Cov(Z) = ρ, is given by

Yi = e′iZ = e′iV
−1/2(X− µ), i = 1, 2, . . . , p.

Moreover,
p∑

i=1

Var(Yi) =
p∑

i=1

Var(Zi) = p

and
ρYi,Zk

= eik

√
λi, i, k = 1, 2, . . . , p.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The sample principal components are defined as those linear combinations which
have maximum sample variance with the restriction that the coefficient vectors are
of unit length.

To be specific,
First Sample PC: the linear combination a′1xj that maximizes the sample
variance a′1xj subject to a′1a1 = 1;
Second Sample PC: the linear combination a′2xj that maximizes the sample
variance a′2xj subject to a′2a2 = 1 and zero sample covariance for the pairs
(a′1xj ,a′2xj);
· · · · · ·
p-th Sample PC: the linear combination a′pxj that maximizes the sample
variance a′pxj subject to a′pap = 1 and zero sample covariance for the pairs
(a′kxj ,a′pxj), k < p.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Recall that the n-values a′1xj of linear combination a′1x have sample variance
a′1Sa1, and the pairs of values (a′1xj ,a′2xj) have sample covariance a′1Sa2.

Sample PCs
Let S be the p× p sample covariance matrix with eigenvalue-eigenvector pairs
(λ̂1, ê1), . . . , (λ̂p, êp), the i-th sample principal component is given by

ŷi = ê′ix = êi1x1 + êi2x2 + · · ·+ êipxp, i = 1, 2, . . . , p

where λ̂1 ≥ · · · ≥ λ̂p ≥ 0 and x is any observation on the variables X1, . . . , Xp.
Also

Sample variance(ŷk) = λ̂k, . . . k = 1, 2, . . . , p
Sample covariance(ŷi, ŷk) = 0, i 6= k.

In addition

Total sample variance =
p∑

i=1

sii =
p∑

i=1

λ̂i

and

rŷi,xk
=
êik

√
λ̂i√

skk
, i, k = 1, 2, . . . , p.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Remarks:

The observations xj are often “centered” by substracting x̄. This has no
effect on the sample covariance matrix S and gives the i-th principal
component

ŷi = êi(x− x̄), i = 1, 2, . . . , p
for any observation vector x.
The values of the i-th principal component at each xj are

ŷji = ê′i(xj − x̄), j = 1, 2, . . . , n.

note that ¯̂yi = 0.

The interpretation of sample PCs.

Realizations of population principal components.
The sample principal components can be viewed as the result of
translating the origin of the original coordinate system to x̄ and
then rotating the coordinate axes until they pass through the
scatter in the directions of maximum variances.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Example 5.2 (Summarizing sample variability with two sample PCs)
(See R-code and output)

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Example 5.2 (Continued)
(Johnson and Wichern(2007) )

1

Weixing Song, Juan Du Workshop on Multivariate Analysis
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PCs Based on Sample Correlation Matrix

Similar to the treatment in population principal component analysis, variables
measured on different scales or on a common scale with widely differing ranges are
often standardized.

Standardization is accomplished by constructing

zj = D−1/2(xj − x̄) =


xj1−x̄1√

s11
xj2−x̄2√

s22
...

xjp−x̄p√
spp

 j = 1, 2, . . . , n.

The sample covariance of z1, z2, . . . , zn is the sample correlation R.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Principal Components from R

Suppose z1, . . . , zn are standardized observations with covariance matrix R, the
i-th sample principal component is

ŷi = êiz = êi1z1 + · · ·+ êipzp, i = 1, 2, . . . , p

where (λ̂i, êi) is the i-th eigenvalue-eigenvector pair of R with λ̂1 ≥ · · · ≥ λ̂p ≥ 0.
Also

Smaple variance(ŷi) = λ̂i, i = 1, 2, . . . , p,
Sample covariance(ŷi, ŷk) = 0, i 6= k.

In addition,

Total (standardized) sample variance = tr(R) = p = λ̂1 + · · ·+ λ̂p

and
rŷi,zk

= êik

√
λ̂i, i, k = 1, 2, . . . , p.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The Number of PCs

No definite answers to this question!

Factors to be considered:
The amount of total sample variance explained;
The relative sizes of the variances of the sample components;
The subject-matter interpretations of the components.

A useful visual technique to determine an appropriate number of principal
components is a scree plot. With the eigenvalues ordered from largest to smallest,
a scree plot is a plot of λ̂i versus i.

The number of components is taken to be the point at which the remaining
eigenvalues are relative small and all about the same size.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Example 5.3 (This example will be revisited in the next section) The
weekly rates of return for five stocks (JP Morgan, Citibank, Wells Fargo, Royal
Dutch Shell, and ExxonMobil) listed on the New York Stock Exchange were
determined for the period January 2004 through December 2005. The weekly rates
of return are defined as (current Friday closing price - previous Friday closing
price )/(previous Friday closing price), adjusted for stock splits and dividends.
The observations in 103 successive weeks appear to be independently distributed,
but the rates of return across stocks are correlated, since, as one expects, stocks
tend to move together in response to general economic conditions.
Let x1, x2, x3, x4, x5 denote the observed weekly rates of return for JP Morgan,
Citibank, Wells Fargo, Royal Dutch Shell, and ExxonMobil, respectively. Find the
PCs based on the sample correlation coefficient.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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