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What is Factor Analysis?

The purpose of factor analysis is to describe the covariance relationship among
many variables in terms of a few underlying, but unobservable, random quantities
called factors.

Motivation: Suppose all the variables within a particular group are highly
correlated among themselves, but have relatively small correlations with variables
in a different group. Each group of variables represents a single underlying factor.

Example: Test scores (Spearman(1904))

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Random vector X: EX = µ, Cov(X) = Σ.

The factor model postulates that X is linearly dependent upon a few unobservable
random variables F1, . . . , Fm, called common factors, and p additional sources of
variation ε1, . . . , εp, called errors/specific factors.

X1 − µ1 = l11F1 + l12F2 + · · ·+ l1mFm + ε1

X2 − µ2 = l21F1 + l22F2 + · · ·+ l2mFm + ε2

· · · · · · · · ·
Xp − µp = lp1F1 + lp2F2 + · · ·+ lpmFm + εp

Matrix form of the factor model

X –µ
(p×1)

= L
(p×m)

F
(m×1)

+ ε
(p×1)

The coefficient lij is called the loading of the i-th variable on the j-th factor, and
L is called loading matrix.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Orthogonal Factor Model with m Common Factors

X
(p×1)

= µ
(p×1)

+ L
(p×m)

F
(m×1)

+ ε
(p×1)

,

where
µi = mean of variable i;
εi = i-th specific factor;
Fj = j-th common factor;
lij =loading of the i-th variable on the j-th factor.

The unobservable random vectors F and ε satisfy the following conditions
F and ε are independent;
E(F) = 0, Cov(F) = I;
E(ε) = 0, Cov(ε) = Ψ, where Ψ is a diagonal matrix.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Covariance Structure for the Orthogonal Factor Model

Cov(X) = LL′ + Ψ or

Var(Xi) = σii = l2i1 + · · ·+ l2im + ψi = hi
2

communality
+ ψi

specific variance

Cov(Xi, Xk) = li1lk1 + · · ·+ limlkm

Cov(X,F) = L, or Cov(Xi, Fj) = lij

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Remarks:

The factor model assumes that the p(p+ 1)/2 variances and covariances for
X can be reproduced from the pm factor loadings lij and the p specific
variances ψi.
It is when m is small relative to p that factor analysis is most useful.
Even the covariance matrix can be factored as LL′ + Ψ, the loading matrix L
and the factors F are ambiguous (not unique).

Ambiguity of Factor Analysis
Factor loadings L are determined only up to an orthogonal matrix T. Thus, the
loadings

L∗ = LT and T
both give the same representation. The communalities, given by the diagonal
elements of LL′ = L∗L∗′ are also unaffected by the choice of T.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The Principal Component Method

The principal component method is based on the spectral decomposition of Σ.

Let (λi, ei) with λ1 ≥ · · · ≥ λp be the eigenvalue-eigenvector pair of Σ. The
spectral decomposition of Σ is given by

Σ = λ1e1e′1 + λ2e2e′2 + · · ·+ λpepe′p

=
[√

λ1e1,
√
λ2e2, · · · ,

√
λpep

]
√
λ1e′1√
λ2e′2
...√
λpe′p


Suppose λm+1, . . . , λp are “small”, then

Σ .=
[√

λ1e1,
√
λ2e2, · · · ,

√
λmem

]
√
λ1e′1√
λ2e′2
...√

λme′m

+


ψ1 0 · · · 0
0 ψ2 · · · 0
...

...
. . .

...
0 0 · · · ψp


where ψi = σii −

∑m

j=1 l
2
ij .
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The Principal Component Method

The principal component factor analysis of the sample covariance matrix S is
specified in terms of its eigenvalue-eigenvector pairs (λ̂1, ê1), . . ., (λ̂p, êp), where
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Let m < p be the number of common factors. Then the
matrix of estimated factor loadings {l̃ij} is given by

L̃ =
[√

λ̂1ê1, · · · ,
√
λ̂mêm

]
The estimated specific variances are provided by the diagonal elements of the
matrix S− L̃L̃′, so

Ψ̃ =


ψ̃1 0 · · · 0
0 ψ̃2 · · · 0
...

...
. . .

...
0 0 · · · ψ̃p

 with ψ̃i = sii −
m∑

j=1

l̃2ij

Communities are estimated as

h̃2
i =

m∑
j=1

l̃2ij

The principal component factor analysis of the sample correlation matrix is
obtained by starting with R in place of S.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The Principal Component Method

How many common factors?

Analytically, we have

Sum of squared entries of (S− (L̃L̃′ − Ψ̃)) ≤ λ̂2
m+1 + · · ·+ λ̂2

p.

The contributions of the first few factors to the sample variances of the variables
should be large.

The contribution to the sample variance sii from the first common factor is l̃2i1,
and the contribution to the total sample variance s11 + · · ·+ spp from the first
common factor is then

l̃211 + l̃221 + · · ·+ l̃2p1 = (
√
λ̂1ê1)′(

√
λ̂1ê1) = λ̂1.

One can select the number of common factors based on the

Proportion of total sample
variance due toj-th factor =

{
λ̂j/(s11 + · · ·+ spp) for a factor analysis of S,

λ̂j/p for a factor analysis of R.

Remark: In some statistics software, the value of m is set to be the number of
eigenvalues of R greater than 1 if the sample correlation matrix is factored.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The Principal Component Method

Example 6.1 Factor analysis of consumer-preference data
In a consumer-preference study, a random sample of customers were asked to rate
several attributes of a new product. The responses, on a 7-point semantic
differential scale, were tabulated and the attribute correlation matrix constructed.
The correlation matrix is presented next:

(See R-code and output)

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The Principal Component Method

Principal Component Solution

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The Principal Component Method

Factorization
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The Maximum Likelihood Method

Assume that F and ε follow normal distributions. The likelihood function is given
by

where Σ = LL′ + Ψ.

We maximize L(µ,Σ) subject to the uniqueness condition L′Ψ−1L to be diagonal.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The Maximum Likelihood Method

Example 6.2 The weekly rates of return for five stocks (JP Morgan, Citibank,
Wells Fargo, Royal Dutch Shell, and ExxonMobil) listed on the New York Stock
Exchange were determined for the period January 2004 through December 2005.
The weekly rates of return are defined as (current Friday closing price - previous
Friday closing price )/(previous Friday closing price), adjusted for stock splits and
dividends. The observations in 103 successive weeks appear to be independently
distributed, but the rates of return across stocks are correlated, since, as one
expects, stocks tend to move together in response to general economic conditions.
Let x1, x2, x3, x4, x5 denote the observed weekly rates of return for JP Morgan,
Citibank, Wells Fargo, Royal Dutch Shell, and ExxonMobil, respectively. Find the
PCs based on the sample correlation coefficient. (See R-code and output)

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Factor Rotation

Factor Rotation: L̂∗ = L̂T where TT′ = I,T′T = I

Varimax Criterion

Let l̃∗ij = l̂∗ij/ĥi and select T that makes

V =
1
p

m∑
j=1

[
p∑

i=1

l̃∗4ij −
1
p

(
p∑

i=1

l̃∗2ij

)2]
as large as possible.

Interpretation: Note that

V ∝
m∑

j=1

(varinace of squares of scaled loadings for j-th factor),

so such a T can “spread out” the squares of the loadings on each factor as much
as possible.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Example 6.3 (Examination Scores)Lawley and Maxwell(1971)

Maximum Likelihood Solution

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Example 6.3 (Continued) Factor Rotation

Rotated Factor Loading
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Example 6.2 (Revisited. Factor rotation using R)

The weekly rates of return for five stocks (JP Morgan, Citibank, Wells Fargo,
Royal Dutch Shell, and ExxonMobil) listed on the New York Stock Exchange were
determined for the period January 2004 through December 2005. The weekly rates
of return are defined as (current Friday closing price - previous Friday closing
price )/(previous Friday closing price), adjusted for stock splits and dividends.
The observations in 103 successive weeks appear to be independently distributed,
but the rates of return across stocks are correlated, since, as one expects, stocks
tend to move together in response to general economic conditions.
Let x1, x2, x3, x4, x5 denote the observed weekly rates of return for JP Morgan,
Citibank, Wells Fargo, Royal Dutch Shell, and ExxonMobil, respectively. Find the
PCs based on the sample correlation coefficient. (See R-code and output)

Weixing Song, Juan Du Workshop on Multivariate Analysis
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