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Discrimination and classification are multivariate techniques concerned with
separating different sets of objects and with allocating new objects to previously
defined groups.

Discriminant analysis is rather exploratory, and classification is less exploratory,
and often requires more problem structure.

Goals of discrimination and classification:
Discrimination: Finding the features that separate known groups in a
multivariate sample.
Classification: Developing a rule to allocate a new object into one of a
number of known groups.

Connections: A classification rule is based on the features that separate the
groups, so the goals overlap.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Notations and Concepts

Let take two populations/classes as the illustration example.

Notations:

Classes: π1, π2.;
Measurements: X = [X1, X2, . . . , Xp];
Sample Space: Ω;
Class Sample Spaces: R1, R2, Ω = R1 ∪R2.

Class Density Functions: f1(x), f2(x);

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Concepts:

Denote P (X ∈ Rj |πi) the probability of classifying an object as πj when it is from
πi.

Misclassification Rate:

P (2|1) = P (X ∈ R2|π1) =
∫
R2

f1(x)dx,

P (1|2) = P (X ∈ R1|π2) =
∫
R1

f2(x)dx.

Bayesian Misclassification Rate
Let pi be the prior probability of πi, i = 1, 2.

P (Observation is misclassified as π1) = P (X ∈ R1|π2)P (π2) = P (1|2)p2,

P (Observation is misclassified as π2) = P (X ∈ R2|π1)P (π1) = P (2|1)p1.
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Sometimes, making a wrong assignment comes with certain cost. The costs
of misclassification can be defined by a cost matrix

Classify as
π1 π2

True Populations: π1 0 c(2|1)
π2 c(1|2) 0

Expected Cost of Misclassification (ECM):

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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A reasonable classification rule should have an ECM as small as possible.

Classification Rule Based on Minimizing ECM
The regions R1 and R2 that minimize the ECM are defined by the values of x for
which the following inequalities hold:

R1 :
f1(x)
f2(x)

≥
(
c(1|2)
c(2|1)

)(
p2

p1

)
R2 :

f1(x)
f2(x)

<

(
c(1|2)
c(2|1)

)(
p2

p1

)
Special cases include:

p1 = p2;
c(1|2) = c(2|1): The classification rule in this case is equivalent to the
classification rule based on the total probability of misclassification (TPM).
p2/p1 = c(1|2)/c(2|1).
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When Σ1 = Σ2

Recall the density function of MVN(µ,Σ):

f(x) =
1

(2π)p/2|Σ|1/2 exp
[
−

1
2

(x− µ)′Σ−1(x− µ)
]
.

Classification of Normal Populations When Σ1 = Σ2

The regions R1 and R2 that minimize the ECM are defined by the values of x for
which the following inequalities hold:

R1 : exp
[
−

1
2

(x− µ1)′Σ−1(x− µ1) +
1
2

(x− µ2)′Σ−1(x− µ2)
]
≥
c(1|2)p2

c(2|1)p1

R2 : exp
[
−

1
2

(x− µ1)′Σ−1(x− µ1) +
1
2

(x− µ2)′Σ−1(x− µ2)
]
<
c(1|2)p2

c(2|1)p1

Weixing Song, Juan Du Workshop on Multivariate Analysis



12/68

Introduction Statistical Modelling Classification: Two Multivariate Normal Populations Evaluating Classification Functions Classification with Several Populations Logistic Regression and Classification

When Σ1 = Σ2

Given the regions R1 and R2, we can construct the following classification rule.

Population Classification Rule: Equal Covariances
Let the populations π1 and π2 be described by the MVN with mean µ1 and µ2,
respectively, and with the same covariance matrix Σ. The allocation rule that
minimizes the ECM is to allocate x0 to π1 if

(µ1 − µ2)′Σ−1x0 −
1
2

(µ1 − µ2)′Σ−1(µ1 + µ2) ≥ log
[
c(1|2)p2

c(2|1)p1

]
,

and allocate x0 to π2 otherwise.
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When Σ1 = Σ2

In most practical situations, the population quantities µ1,µ2 and Σ are unknown.

To implement the above classification rules, the population quantities are replaced
by the sample analogues.

Suppose we have n1 observations of X′ = [X1, X2, . . . , Xp] from π1 and n2
measurements of this quantity from π2, with n1 + n2 − 2 ≥ p. The respective data
matrices are

X1 =


x′11
x′12
...

x′1n1

 X2 =


x′21
x′22
...

x′2n2

 .
Let x̄1, x̄2 be the sample mean vectors, and S1, S2 be the sample covariance
matrices.

Define the pooled sample covariance matrix as

Spooled =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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When Σ1 = Σ2

Sample Classification Rule: Equal Covariances
The sample classification rule allocates x0 to π1 if

(x̄1 − x̄2)′S−1
pooledx0 −

1
2

(x̄1 − x̄2)′S−1
pooled(x̄1 + x̄2) ≥ log

[
c(1|2)p2

c(2|1)p1

]
,

and allocate x0 to π2 otherwise.
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When Σ1 = Σ2

Example 7.1 (Hemophilia A Carriers): To construct a procedure for
detecting potential hemophilia A carriers, blood samples were assayed for two
groups of women and measurements on the two variables

X1 = log10(AHF activity), X2 = log10(AHF-like antigen).

The data set can be found in R package rrcov.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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When Σ1 = Σ2

Remark:

Scaling: The coefficient vector â = S−1
pooled(x̄1 − x̄2) is frequently “scaled”

or “normalized” to help the interpretation of its elements.

Two commonly used scalings are

â∗ = â√
â′â

;
â∗ = â

â1
, where â1 is the first element in â.

Scaling is recommended only if the X variables have been standardized.
Fisher’s approach: Using an entirely different argument, Fisher developed
a dimension-reduction-type classification approach, which is equivalent to
linear discriminant approach.

Fisher’s approach does not assume that the population is normal. However,
it does assume that the population covariance matrices are equal.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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When Σ1 6= Σ2

Population Classification Rule: Unequal Covariances
Let the populations π1 and π2 be described by the MVN densities with mean
vectors and covariance matrices µ1, Σ1 and µ2, Σ2, respectively. The allocation
rule that minimizes the ECM is to allocate x0 to π1 if

−
1
2

x′0(Σ−1
1 − Σ−1

2 )x0 + (µ′1Σ−1
1 − µ′2Σ−1

2 )x0 − k ≥ log
[
c(1|2)p2

c(2|1)p1

]
,

and allocate x0 to π2 otherwise, where

k =
1
2

log
( |Σ1|
|Σ2|

)
+

1
2

(µ′1Σ−1
1 µ1 − µ′2Σ−1

2 µ2).
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When Σ1 6= Σ2

Quadratic Classification Rule: Normal Population with Unequal Covariance
Matrices
The sample classification rule allocates x0 to π1 if

−
1
2

x′0(S−1
1 − S−1

2 )x0 + (x̄′1S−1
1 − x̄′2S−1

2 )x0 − k ≥ log
[
c(1|2)p2

c(2|1)p1

]
,

and allocate x0 to π2 otherwise, where

k =
1
2

log
( |S1|
|S2|

)
+

1
2

(x̄′1S−1
1 x̄1 − x̄′2S−1

2 x̄2).
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The performance of any classification procedure is often measured by the error
rates or misclassification probabilities.

When the population density functions are known, the misclassification
probabilities can be calculated.

The optimum error rate (OER)

OER = p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx,

where
R1 :

f1(x)
f2(x)

≥
p2

p1
R2 :

f1(x)
f2(x)

<
p2

p1
.

Example: Derive an expression for the OER when p1 = p2 = 1/2, and
π1 : MVN(µ1,Σ), π2 : MVN(µ2,Σ).

We can show that, with ∆2 = (µ1 − µ2)′Σ−1(µ1 − µ2),

OER = minimum TPM = Φ(−∆/2)

Weixing Song, Juan Du Workshop on Multivariate Analysis
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The performance of sample classification functions can be evaluated by the
actual error rate (AER).

AER = p1

∫
R̂2

f1(x)dx + p2

∫
R̂1

f2(x)dx,

where R̂1 and R̂2 represent the classification regions determined by the
sample. For LDA,

R̂1 : (x̄1 − x̄2)′S−1
pooledx− 1

2
(x̄1 − x̄2)′S−1

pooled(x̄1 + x̄2) ≥ log
[
c(1|2)p2

c(2|1)p1

]
R̂2 : (x̄1 − x̄2)′S−1

pooledx− 1
2

(x̄1 − x̄2)′S−1
pooled(x̄1 + x̄2) < log

[
c(1|2)p2

c(2|1)p1

]
Unfortunately, AER cannot be calculated because it depends on the unknown
density functions.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Apparent Error Rate (APER): The fraction of observations in the training
sample that are misclassified by the sample classification function.

The APER can be easily calculated from the confusion matrix, which shows
actual versus predicted group membership. For n1 observations from π1 and
n2 observations from π2, the confusion matrix has the form

Predicted membership
π1 π2

Actual Membership: π1 n1c n1m = n1 − n1c
π2 n2m = n2 − n2c n2c

where

n1c = number of π1 items correctly classified as π1 items
n1m = number of π1 items misclassified as π2 items
n2c = number of π2 items correctly classified as π2 items
n2m = number of π2 items misclassified as π1 items

The APER is defined as

APER =
n1m + n2m

n1 + n2

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Remark:

The APER tends to underestimate the AER.
A better procedure to estimate the AER is to split the total sample into a
training sample and a validation sample. The training sample is used to
construct the classification function, and the validation sample is used to
evaluate it.
It suffers from two main defects:

It requires large samples;
The function evaluated is not the function of interest.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Lachenbruch’s “holdout” procedure

Start with the π1 group of observations. Omit the one
observation from this group, and develop a classification function
based on the remaining n1 − 1, n2 observations.
Classify the “holdout” observation, using the function construct
in Step 1.
Repeat Step 1 and Step 2 until all of the π1 observations are
classified. Let n(H)

1m be the number of holdout (H) observations
misclassified in this group.
Repeat Step 1 through Step 3 for the π2 observations. Let n(H)

1m
be the number of holdout observations misclassified in this group.

Then we can estimate P (2|1) and P (1|2) by

P̂ (2|1) =
n

(H)
1m
n1

, P̂ (1|2) =
n

(H)
2m
n2

.

and estimate E(AER) by

Ê(AER) =
n

(H)
1m + h

(H)
2m

n1 + n2
.

Note: For moderate sample size, Lachenbruch’s estimate is nearly unbiased.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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In theory, the generalization of classification procedure from 2 to g > 2 groups is
straightforward. However, not much is known about the properties of the
corresponding sample classification functions, for example, their error rates have
not been fully investigated.

Notation:

πi: the i-th population, i = 1, 2, . . . , g;
fi(x): the density associated with πi;
c(k|i): the cost of allocating an item to πk when it belongs to πi;
Rk: the set of x-values belonging to πk;
P (k|i) : the probability of classifying item as πk when it belongs to πi.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Expected Cost of Misclassifying (ECM)

The conditional ECM of a item from πi into other populations is

ECM(i) =
∑
k 6=i

P (k|i)c(k|i).

The overall ECM is defined as

ECM =
g∑
i=1

pi

(∑
k 6=i

P (k|i)c(k|i)

)
.

Classification Based on Minimizing ECM
The classification regions that minimizes the overall ECM are defined by
allocating x to that population πk for which∑

i6=k

pifi(x)c(k|i)

is smallest, k = 1, 2, . . . , g. If a tie occurs, x can be assigned to any of the tied
populations.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Minimum ECM Classification Rule with Equal Misclassification Costs

Allocate x0 to πk if pkfk(x) > pifi(x) for all i 6= k.

Remark:

The above classification rule is identical to the one that maximizes the
“posterior” probability P (πk|x). Note that

P (πk|x) =
pkfk(x)∑g

i=1 πifi(x)
, k = 1, 2, . . . , g.

To implement the above classification rule, we must specify: prior
probabilities, misclassification costs, and population densities.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Classification with Normal Populations

Recall the MVN density function.

Based on the classification rule, x will be allocated to πk if

log pkfk(x) = log pk −
p log(2π)

2
−

1
2

log |Σk| −
1
2

(x− µk)′Σ−1
k

(x− µk)

is the largest among all log πifi(x), i = 1, 2, . . . , g.

Define the quadratic discrimination score (QDS) for the i-th population as

dQi (x) = −
1
2

log |Σi| −
1
2

(x− µi)′Σ
−1
i (x− µi) + log pi.

Minimum TPM Rule for MVN: Unequal Σi
Allocate x to πk if

dQ
k

(x) = the largest of dQ1 (x), . . . , dQg (x).

Weixing Song, Juan Du Workshop on Multivariate Analysis
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In practice, the µi and Σi are unknown. Sample analogs will be used.

Let ni, x̄i, Si denote the sample size, sample mean vector and covariance matrix
of the sample from the i-th population.

The sample QDS is defined as

d̂Qi (x) = −
1
2

log |Si| −
1
2

(x− x̄i)′S−1
i (x− S̄i) + log pi.

Minimum TPM Rule for MVN: Unequal Σi
Allocate x to πk if

d̂Q
k

(x) = the largest of d̂Q1 (x), . . . , d̂Qg (x).

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Note: If all Σi are equal, the population QDS becomes

dQi (x) = −
1
2

log |Σ| −
1
2

x′Σ−1x + µ′iΣ
−1x− 1

2
µ′iΣ

−1µi + log pi.

Define the linear discriminant score (LDS) as

di(x) = µ′iΣ
−1x− 1

2
µ′iΣ

−1µi + log pi, i = 1, 2, . . . , g,

and an estimated LDS is given by

d̂i(x) = x̄′iS
−1
pooledx− 1

2
x̄′iS
−1
pooledx̄i + log pi, i = 1, 2, . . . , g,

where Spooled is defined as

Spooled =
1

n1 + n2 + · · ·+ ng − g
[(n1 − 1)S1 + · · ·+ (ng − 1)Sg ].

Estimated Minimum TPM Rule for MVN: Equal Σi
Allocate x to πk if

d̂k(x) = the largest of d̂1(x), . . . , d̂g(x).

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Fisher’s Method

Motivation: To obtain a reasonable representation of the populations that
involve only a few linear combinations of the observations, such as a′1x,a′2x, . . ..

Benefits:
Convenient representations of the g populations that reduce the dimension
from a very large number of characteristics to a relatively few linear
combinations.
Plotting of the means of the first two or three linear combinations
(discriminants). This helps display the relationships and possible grouping of
the populations.
Scatter plots of the sample values of the fist two discriminants, which can
indicate outliers or other abnormalities in the data.

Note: Fisher’s method does not assume normality. However, the population
covariance matrices are assumed to be equal and of full rank.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Theory:

µi : mean vectors, i = 1, 2, . . . , g;
Σ : mean covariance matrix;
µ̄ : combined mean vectors.

Define

Bµ =
g∑
i=1

(µi − µ̄)(µi − µ̄)′, µ̄ =
1
g

g∑
i=1

µi.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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For any linear combination Y = a′X, we have, for population πi,

E(Y ) = a′µi, Var(Y ) = a′Σa.

Define
SS distances from populations

to overall mean of Y
Var(Y )

=

∑g

i=1(a′µi − a′µ̄)2

a′Σa
=

a′Bµa
a′Σa

.

This ratio measures the variability between the groups of Y -values relative to the
common variability within groups.

We can select a to maximize this ratio.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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µi and Σ are unavailable in general, and sample analogs will be used.

The sample between and within groups matrices are defined by

B =
g∑
i=1

(xi − x̄)(xi − x̄)′, W =
g∑
i=1

(ni − 1)Si =
g∑
i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)′

Fisher’s Sample Linear Discriminants

Let λ̂1, . . . , λ̂s > 0 denote the s ≤ min(g − 1, p) nonzero eigenvalues of W−1B and
ê1, . . . , ês be the corresponding eigenvectors (scaled so that ê′Spooledê = 1). Then
the vector of coefficients â that maximizes the ratio â′Bâ/â′Wâ is given by
â1 = ê1. The linear combination â1x is called the sample first discriminant. The
choice âk = êk produces the sample k-th discriminant, k ≤ s.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Fisher’s Discriminant: Classification

Fisher’s discriminants were derived for the purpose of obtaining a low-dimensional
representation of the data that separates the populations as much as possible.

Although they were derived from considerations of separation, the discriminant
also provide the basis for a classification rule.

Let
Yk = a′kX = k-th deiscriminant, k ≤ s.

Under population πi, Y = (Y1, . . . , Ys)′ has mean vector
µiY = (µiY1 , . . . ,µiYs

)′ = (a′1µi, . . . ,a′sµi) and covariance matrix I.

If only r of the discriminants are used for allocation, the rule is to allocate x to πk
if

r∑
j=1

(yj − µkYj
)2 =

r∑
j=1

[a′j(x− µk)]2 ≤
r∑
j=1

[a′j(x− µi)]2 for all i 6= k.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Relationship to the “normal theory” discriminant scores

Connection between Fisher’s and Normal-Theory Based Classification Rules

Let aj = Σ−1/2ej and ej is an eigenvector of Σ−1/2BµΣ−1/2. Then
p∑
j=1

(yj − µiYj
) = (x− µi)′Σ−1(x− µi) = −2di(x) + x′Σ−1x + 2 log(pi).

If λ1 ≥ · · · ≥ λs > 0 = λs+1 = · · · = λp,
∑p

j=s+1(yj − µiYj
) is constant for all

populations i = 1, 2, . . . , g, so only the first s discriminants contribute to the
classification.

Remark: If the prior probabilities are the same, Fisher’s rule with r = s is
equivalent to the population version of the minimum TPM rule.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Fisher’s Classification Procedure Based on Sample Discriminants
Allocate x to πk if

r∑
j=1

(ŷj − ȳkj)2 =
r∑
j=1

[âj(bx− x̄k)]2 ≤
r∑
j=1

[âj(bx− x̄i)]2 for all i 6= k

where âj is defined on page 35, ȳkj = â′j x̄k and r ≤ s.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Remark:

If the prior probabilities are the same and r = s, Fisher’s rule is equivalent to
the sample version of the minimum TPM rule.
Why the fist few discriminants are more important than the last few. In fact,
we can show

∆2
S =

g∑
i=1

(µi − µ̄)′Σ−1(µi − µ̄)

= λ1 + · · ·+ λp

=
g∑
i=1

(µiY − µ̄Y )′(µiY − µ̄Y )

=
g∑
i=1

(µiY1 − µ̄Y1 )2 + · · ·+
g∑
i=1

(µiYp − µ̄Yp )2

It follows that the first discriminant makes the largest contribution λ1 to the
separative measure ∆2

S .

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Statistical Model:

Y : bi-valued response variable. Often coded as 0 and 1;
z = (1, z1, z2, . . . , zr)′ : predictors;
E(Y |z) = P (Y = 1|z) = p(z) and

log
(

p(z)
1− p(z)

)
= β′z,

where β = (β0, β1, . . . , βr).

Likelihood Function:

L(β) =
n∏
j=1

pyi (zj)[1− p(zj)]1−yj =

∏n

j=1 e
yj (β0+β1zj1+···+βrzjr)∏n

j=1[1 + eβ0+β1zj1+···+βrzjr ]
.
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Statistical Inferences:

Maximum Likelihood Estimation.

β̂ = argminβL(β).

When the sample size is large,

β̂  Nr+1

(
β,

[
n∑
j=1

p̂(zj)(1− p̂(zj))zjz′j

]−1)
.

Confidence interval for βk is

β̂k ± z1−α/2SE(β̂k), k = 0, 1, . . . , r.

Likelihood ratio test for H0 : βk = 0.
Let β̂ denote the MLE of L(β0, β1, . . . , βr), and β̃ denote the MLE of
(β0, . . . , βk−1, βk, . . . , βr) for the reduced model L(β0, . . . , βk−1, βk, . . . , βr).
Then the deviance

−2[logL(β̃)− logL(β̂)] ∼ χ2
1.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Classification via Logistic Regression

Classification vis Logistic Regression
Assign z to population 1 if the estimated odds ratio is greater than 1 or

p̂(z)
1− p̂(z)

= exp(β̂0 + β̂1z1 + · · ·+ β̂rzr) > 1

or
β̂0 + β̂1z1 + · · ·+ β̂rzr > 0.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Searching the data for a structure of natural clusters is an important exploratory
technique. Clusters can provide an exploratory means for assessing dimensionality,
identifying outliers, and suggesting interesting hypotheses concerning relationships.

Clustering is distinct from the classification methods.

Classification assumes that the groups are known, and the objective is to assign
new observations to one of these groups. In statistical machine learning term,
classification is a “supervised learning method”.

Clustering is a more primitive technique in that no assumptions are made
concerning the number of groups. In statistical machine learning term,
classification is a “unsupervised learning method”.

Clustering is done on the basis of similarities or dissimilarities (distances), so
meaningful clusterings depend on the definition of similarity.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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When items (units/cases/observations) are clustered, similarity is usually
indicated by some sort of distance; while when variables are grouped, similarity is
usually measured by correlation coefficients.
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Similarity or Dissimilarity of Two Items: Suppose two items are

x′ = [x1, x2, . . . , xp], y′ = [y1, y2, . . . , yp].

Some commonly used distances:

Euclidean Distance: d(x, y) =
[∑p

i=1
(xi − yi)2

]1/2
.

Manhattan (City-Block) Distance: d(x, y) =
∑p

i=1
|xi − yi|.

Canberra Distance (for nonnegative variables only)

d(x, y) =
p∑

i=1

|xi − yi|
(xi + yi)

.

Czekanowski Distance (for nonnegative variables only)

d(x, y) = 1−
2
∑p

i=1
min(xi, yi)∑p

i=1
(xi + yi)

.

Whenever possible, it is advisable to use “true” distances.
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The distances defined previously are suitable for “continuous variables”.

When items cannot be represented by continuous values, they are often compared
on the basis of the presence or absence of certain characteristics, that is, the
binary variable,

1 = present, 0 = absent.

Let xij be the score (0 or 1) of the j-th binary variable on the i-th item. Then
p∑
j=1

(xij − xkj)2

provides a count of the number of mismatches.

Note: The above distance suffers from weighting the 1-1 and 0-0 matches equally.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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To allow for different treatment of the 1-1 and 0-0 matches, several schemes of
defining similarity coefficients have been proposed.

For two items i and k, suppose

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Based on the similarity coefficient 1, the similarity coefficients for these 5
individuals can be summarized in the following matrix:

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Similarity and Association Measures for Variables

In some applications, it is the variables, not the items, that must be grouped.

For continuous variables, the sample correlation coefficient is often used as the
similarity measure.

For binary variables with n items, the n items are categorized, with the usual 0
and 1 coding, the contingency table becomes

The usual product moment correlation coefficient is given by

r =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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There are two hierarchical clustering methods.

Agglomerative hierarchical methods

Starts with the individual objects, then the most similar objects are first
grouped, and these initial groups are merged according to their similarities.
Eventually, as the similarity decreases, all subgroups are fused into a single
cluster.
Divisive hierarchical methods

An initial single group of objects is divided into two subgroups, these
subgroups are then further divided into dissimilar subgroups; the process
continues until there are as many subgroups as objects.

Weixing Song, Juan Du Workshop on Multivariate Analysis



58/68

Introduction Similarity Measures Hierarchical Clustering Methods

Steps for Agglomerative Hierarchical Clustering Algorithm (AHCA):

Suppose we have N objects.

1 Start with N clusters, each contains a single entity;
2 Compute the N ×N symmetric matrix of distances (or similarities)

D = {dij};
3 Search the distance matrix for the nearest pair of clusters. Let the distance

between the “most similar” clusters U and V be dUV ;

4 Merge clusters U and V . Label the newly formed cluster (UV ). Update the
entries in the distance matrix by
(a) deleting the rows and columns corresponding to clusters U and V ;
(b) adding a row and column giving the distances between cluster

(UV ) and the remaining cluster;
5 Repeat Steps 3-4 a total of N − 1 times. Record the identity of clusters that

are merged and the levels (distances or similarities) at which the merges take
place.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Linkage Methods

Single Linkage (minimum distance or nearest neighbor)
Complete Linkage (maximum distance or farthest neighbor)
Average Linkage (average distance)

Graphical illustration of linkages

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Linkage Methods

Example (Clustering using single linkage): We use the following
hypothetical distances between five objects to illustrate the single linkage
algorithm.

D = {dik} =

1 2 3 4 5


1 0
2 9 0
3 3 7 0
4 6 5 9 0
5 11 10 2 8 0

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Linkage Methods

1 2 3 4 5[ ]1 0
2 9 0
3 3 7 0
4 6 5 9 0
5 11 10 2 8 0

=⇒ min
i,k

(dik) = d53 = 2 =⇒ (35)

d(35)1 = min{d31, d51} = 3
d(35)2 = min{d32, d52} = 7
d(35)4 = min{d34, d54} = 8

=⇒

(35) 1 2 4[ ]
(35) 0

1 3 0
2 7 9 0
4 8 6 5 0

=⇒ (135)

d(135)2 = min{d12, d32, d52} = 7
d(135)4 = min{d14, d34, d54} = 6 =⇒

(135) 2 4[ ]
(135) 0

2 7 0
4 6 5 0 =⇒ (24)

d(135)(24) = min{7, 6} = 6 =⇒

(135) (24)[ ]
(135) 0
(24) 6 0 =⇒ (12345)

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Linkage Methods

Remarks on Single Linkage

Refer to the following figure

Since single linkage joins clusters by the shortest link between them, the
technique cannot discern poorly separated clusters;
Single linkage is one of the few clustering methods that can delineate
non-ellipsoidal clusters. The tendency of single linkage to pick out long
stringlike clusters is known as chaining.
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Linkage Methods

Complete Linkage: Complete linkage proceeds in much the same manner as
single linkage clusterings, with one important exception: at each stage, the
distance (similarity) between clusters is determined by the distance (similarity)
between the two elements, one from each cluster, that are most distant.

Average Linkage: The procedure is similar to that of the single linkage and
complete linkage, except that the distance between two clusters are defined as

dUV =

∑
i

∑
k
dik

NUNV
,

where dik is the distance between object i in the cluster U and object k in the
cluster W , and NU and NV are the number of items in clusters U and V .
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Ward’s Method

Ward’s method is based on minimizing the “loss of information” from joining two
groups.

Suppose we have N items.

For a given cluster k, let ESSk be the sum of squared deviations of every item in
the cluster from the cluster mean (centroid).

Key Steps in Ward’s Procedure

Initially, each cluster consists of a single item. So

ESSk = 0, k = 1, 2, . . . , N,

thus the sum of the cluster ESSk is ESS = 0.
At each step in the analysis, the union of every possible pair of clusters is
considered, and the two clusters whose combination results in the smallest
increase in ESS are joined.

Ward’s method is based on the notion that the clusters of multivariate
observations are expected to be roughly elliptically shaped.

Weixing Song, Juan Du Workshop on Multivariate Analysis



65/68

Introduction Similarity Measures Hierarchical Clustering Methods

Nonhierarchical Clustering Methods

Nonhierachical clustering methods are designed to group items, rather than
variables, into K clusters.

K-means Method

Step 1: Partition the items into initial clusters.
We can start with a partition of all items into K preliminary groups, or
specify K initial centroids (seed points).
Step 2: Proceed through the list of items, assigning an item to the cluster
whose centroid (mean) is nearest. Then recalculate the centroid for the
cluster receiving the new item and for the cluster losing the item.
Distance is usually computed using Euclidean distance with either
standardized or unstandardized observations.
Step 3: Repeat Step 2 until no more reassignment take place.
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Clustering Based on Statistical Models

Mixture Model

Suppose a population has K clusters.

The probability density function of the k-th cluster is fk(x).

For any observation x from this population, with probability pk it comes from the
k-th cluster, k = 1, 2, . . . ,K.

Therefore, the density function of x is

f(x) =
K∑
k=1

pkfk(x),

where pk ≥ 0 and
∑K

k=1 pk = 1.

Weixing Song, Juan Du Workshop on Multivariate Analysis
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Clustering Based on Statistical Models

Normal Mixture Model

The most common mixture model is the mixture of multivariate normal
distributions where fk(x) = Np(µk,Σk).

The likelihood function L based a sample of size n, {xj}nj=1 is

n∏
j=1

[
K∑
k=1

pk

(2π)p/2|Σk|1/2 exp
(
−

1
2

(xj − µk)′Σ−1
k

(xj − µk)
)]

.

One can estimate the unknown parameters using maximum likelihood estimation
procedure.

After all the parameters are estimated, the j-th observation will be assigned to the
k-th cluster for which the conditional probability of membership

p(k|xj) =
p̂kfk(xj)∑K

i=1 p̂ifi(xj)

is the largest.
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Clustering Based on Statistical Models

Note:

Computing the MLE is very complicated. Additional covariance structure
are often considered to reduce the calculation complexity.

How to decide the number of clusters K?

Minimizing the AIC

AIC = −2 log(Lmax) + 2
[
K(p+ 1)(p+ 2)

2 − 1
]

Minimizing the BIC

BIC = −2 log(Lmax) + 2 log(n)
[
K(p+ 1)(p+ 2)

2 − 1
]

Weixing Song, Juan Du Workshop on Multivariate Analysis
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