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Course Information

Contact Information: weixing@ksu.edu

Class Place and Time: 302 Dickens Hall, 2:30-3:45, Tuesday, Thursday

References:

• Statistics for High-Dimensional Data, by Peter Bühlmann , Sara van de
Geer; Springer.

• The Elements of Statistical Learning, by Trevor Hastie, Robert Tibshirani,
and Jerome Friedman; 2nd Edition, Springer.
(Book Website: http://statweb.stanford.edu/t̃ibs/ElemStatLearn/)

• Modern Multivariate Statistics, by Alan Izenman; Springer.
(Book Website: http://astro.temple.edu/ alan/MMST/index.html)

• Journal articles.
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Introduction

We are entering the era of Big Data — a term that refers to the explosion of
available information.

Such a Big Data movement is driven by the fact that massive amounts of very
high-dimensional or unstructured data are continuously produced and stored with
much cheaper cost than they used to be.

Examples are abundant in genome sequencing, social media analysis, biomedical
imaging, high-frequency finance, surveillance videos, retail sales.

The massive amounts of high-dimensional data bring both opportunities and new
challenges to data analysis. Valid statistical analysis for Big Data is becoming
increasingly important.
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In the classical statistical model setting, the number of covariates p is fixed and
the sample size n is large.

To be specific, high-dimensional statistics refers to statistical inference when the
number of covariates or parameters p is comparable to or much larger than the
number of observations n.

• High dimension: The dimensionality p grows polynomially with the sample
size n, i.e., p = O(nα) for some α > 0.

• Ultra-high dimension: The dimensionality p grows non-polynomially with
the sample size n, for example, log p = O(nα) for some α > 0. This is the
so-called non-polynomial (NP) dimensionality.
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The challenges of analyzing Big Data:

Big data are characterized by high dimensionality and large sample size. These
two features raise three unique challenges:

(1). high dimensionality brings noise accumulation, spurious correlations, and
incidental homogeneity;

(2). high dimensionality combined with large sample size creates issues such as
heavy computational cost and algorithmic instability;

(3). the massive samples in Big Data are typically aggregated from multiple
sources at different time points using different technologies. This creates
issues of heterogeneity, experimental variations and statistical biases. and
requires us to develop more adaptive and robust procedures.

Weixing Song STAT 905 September 23, 2014 9/49



Many traditional methods that perform well for moderate sample size do not scale
to massive data. Similarly, many statistical methods that perform well for
low-dimensional data are facing significant challenges in analyzing
high-dimensional data.

To design effective statistical procedures for exploring and predicting Big Data, we
need to address Big Data problems such as heterogeneity, noise accumulation,
spurious correlations and incidental heterogeneity, in addition to balancing the
statistical accuracy and computational efficiency.

The goals of analyzing Big Data:

(1). to develop effective and robust methods that can accurately predict the
future observations;

(2). to gain insight into the relationship between the features and response for
scientific purpose;

(3). to understand heterogeneity and commonality across different subpopulation;
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Examples

Example 1 (DNA Expression Microarrays)

DNA (deoxyribonucleic acid) is the basic material
that makes up human chromosomes. DNA
microarrays measure the expression of a gene in a cell
by measuring the amount of mRNA (messenger
ribonucleic acid) present for that gene.

A gene expression data set collects together the
expression values from a series of DNA microarray
experiments, with each column representing an
experiment. There are therefore several thousand
rows representing individual genes and tens of
columns representing samples. For example, the figure
on the right contains 6830 genes (rows) and 64
samples (columns). For clarity reason, only 100 rows
are shown.

Typical questions include:
• which samples are most similar to each other, in

terms of their expression profiles across genes?
• which genes are most similar to each other, in

terms of their expression profiles across samples?
• do certain genes show very high/low expression

for certain cancer samples?
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Example 2 (Macy’s Inc. and real-time pricing): The retailer adjusts pricing
in near-real time for 73 million items, based on demand and inventory, using
technology from SAS Institute.

Example 3 (Tipp 24 AG): Tipp24 AG, a platform for placing bets on
European lotteries, and prediction. The company uses KXEN software to analyze
billions of transactions and hundreds of customer attributes, and to develop
predictive models that target customers and personalize marketing messages on
the fly. That led to a 90% decrease in the time it took to build predictive models.

Example 4 (Spatial correlation of home price appreciation (HPA)): The
consideration of 1000 neighborhoods requires 1 million paramters.

Example 5 (Stock price): Managing 2000 stocks involves over 2 million
parameters in the covariance matrix.

Example 6 (Image analysis): High resolution images in signal processing and
medical imaging analysis.

Example 7 (Text classification): Text or document classification (email spam,
feature extraction via frequency counting).
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Curse of High-Dimensionality

The term “curse of dimensionality” (Bellman, 1961) described how difficult it was
to perform high-dimensional numerical integration. This led to the more general
use of the term to describe the difficulty of dealing with statistical problems in
high dimensions.

• Sparsity.

Suppose we have p input variables. Divide the axis of each of p input
variables into k intervals with equal length. Such a partition divides the
entire p-dimensional input space into kp hypercubes. Now we sample
uniformly from these hypercubes. Note that in general increasing k reduces
the sizes of the hypercubes while increasing the precision of the
approximation. If there has to be at least one input point in each hypercube,
then the number of such points needed must increase exponentially as p
increases. However, in practice, onely a limited number of observations are
available, i.e., the data are very sparse in high-dimensional space, and we
never have enough data.
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Boundary phenomenon.

As the number of dimensions grows larger, almost all the volume inside a
hypercubic region of input space lies closer to the boundary or surface of the
hypercube rather than near the center.

(i) An p-dimensional hypercube [0, a]p with each edge of length a has volume ap.
(ii) Consider a slightly smaller hypercube with each edge of length a − ε, where

ε > 0 is small.
(iii) The difference in volume between these tow hypercubes is ap − (a − ε)p.
(iv) As p→∞, the proportion of the volume that is contained between the two

hypercubes is
ap − (a − ε)p

ap = 1−
(
1−

ε

a

)p
→ 1.

Question: Suppose we have an p-dimensional hypercube [0, 1]p and observations
are uniformly sampled from it. What is the value of ε so that an p-dimensional
sub-hypercube [0, 1− ε]p can capture r percent of the data?

Solution: ε = 1− r1/p.
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• Heterogeneity. Big Data are often created via aggregating many data
sources corresponding to different subpopulations. Each subpopulation might
exhibit some unique features not shared by others. So heterogeneity is very
common in such contexts.

The following mixture model is often used to describe data with many
subpopulations:

λ1p1(y; θ1(x)) + · · ·λmpm(y; θm(x)),
where λj ≥ 0 represents the proportion of the j-th subpopulation, pj(y, θj(x))
is the probability distribution of the response of the j-th subpopulation given
the covariates x with θj(x) as the parameter vector.

Inferring the mixture model for large datasets requires sophisticated
statistical and computational methods. In low dimensions, standard
techniques such as the EM algorithm for finite mixture models can be
applied. In high dimensions, we need to carefully regularize the estimating
procedure to avoid overfitting or noise accumulation and to devise good
computation algorithms.
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• Noise accumulation.

Noise accumulation is a common phenomenon in high-dimensional prediction.

Example 1: Consider a linear regression model y = Xβ + ε, where y is an
n-vector of response, X is an n× p design matrix, β is a p-vector of regression
coefficients with the true value β0 having only s nonzero components, and ε
is an n-vector of random error with mean 0 and variance σ2.

The model built on all regressors usually has prediction error of order
(1 + p/n)σ2 rather than (1 + s/n)σ2 when p ≤ n and there are only s
intrinsic predictors.

The ordinary least squares (OLS) estimator is not well behaved when p is
comparable to n and the OLS is not applicable when p > n.
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Remark: For an arbitrary test point x0, we have ŷ0 = xT
0 β̂, which can be written

as
ŷ0 = xT

0 β + xT
0 (XTX)−1XTε.

Therefore, the conditional expected prediction error (EPE) given x0 is

EPE(x0) = Ey0|x0 (y0 − ŷ0)2 = σ2 + σ2ET xT
0 (XTX)−1x0 + 02.

If n is large and T is selected at random, and assuming EX = 0, then
XTX a.s−→ nCov(X). Therefore, the EPE of ŷ0 is

Ex0EPE(x0) ∼ σ2 +
σ2

n
Ex0xT

0 Cov−1(X)x0 = σ2(1 + p/n).
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Example 2: Consider a classification problem where the data come from two
classes:

X1, . . . ,Xn ∼ Nd(µ1, Id), Y1, . . . ,Yn ∼ Nd(µ2, Id).
To illustrate the impact of noise accumulation in classification, set n = 100, and
d = 1000. We set µ1 = 0 and µ2 to be sparse, i.e., only the first 10 entries of µ2
are nonzero with value 3, and all other entries are zero.

The first two principal components by using the first m = 2, 40, 200 features and
the whole 1000 features are plotted in the following figure. As illustrated in these
plots, when m = 2 we obtain high discriminative power. However, the
discriminative power becomes very low when m is too large due to noise
accumulation.
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• Spurious correlation.

Variables tend to be highly correlated in high dimensions.

From the geometrical point of view, the correlation among variables increases
with dimensionality, more and more variables packed together.

High collinearity and spurious correlation make high-dimensional variable
selection intrinsically difficult:

• some true or important variables can have a weaker relationship
with the response than some noise variables;

• some noise variables can have a strong relationship with the
response.
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Example 1: Let x1, x2, . . . , xn be n independent observations of a d-dimensional
Gaussian random vector X = (X1, . . . ,Xd)′ ∼ Nd(0, Id). Repeatedly simulate the
dat with n = 60 and d = 800, 6400 for 1000 times. Consider the empirical
distribution of the maximum absolute sample correlation coefficient between the
first variable with the remaining ones defined as

r̂ = max
2≤j≤d

|Ĉorr(X1,Xj)|.

Furthermore, we compute the maximum absolute multiple correlation between X1
and linear combinations of several irrelevant spurious variables:

R̂ = max
|S=4|

max
{βj}4j=1

|Ĉorr(X1,
∑
j∈S

βjXj)|,

where S is any size of four subset of {2, 3, . . . , d} and βj is the LS regression
coefficient of Xj when regressing X1 on {Xj}j∈S .
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Example Code:

maxcorr=function(n,d)
{
X=matrix(rnorm(n*d),nrow=n);
max(abs(cor(X[,1],X[,-1])))
}

mcsample1=mcsample2=vector()
for(i in 1:1000)
{
mcsample1[i]=maxcorr(60,800);
mcsample2[i]=maxcorr(60,6400);
}

lend=min(c(mcsample1,mcsample2));
rend=max(c(mcsample1,mcsample2));
hist(mcsample1,col=rgb(0,0,1,1/4),freq=F,xlim=c(lend,rend),ylim=c(0,13))
hist(mcsample2,col=rgb(1,0,0,1/4),freq=F,add=T)
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Even though X1 is utterly independent of X2, . . . ,Xd , the correlation between X1
and other variables, or the closest linear combination of any other four variables ca
be very high.
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Some bad consequences of spurious correlation:

• False discovery.
Let XS = {Xj}j∈S be the sub-random vector indexed by S and let Ŝ be the
selected set that has the higher spurious correlation with X1. Then when d is
large, if X1 represents the expression level of a gene that is responsible for a
disease, we cannot distinguish it from the other four genes in Ŝ that have a
similar predictive power although they are scientifically irrelevant.

• Wrong statistical inference.
Consider a linear regression model y = Xβ + ε, Var(ε) = σ2Id . We would
like to estimate the standard error σ of the residual, which is a prominently
featured in statistical inferences of regression coefficients, model selection,
goodness-of-fit test and marginal regression. Let Ŝ be a set of selected
variables and PŜ be the projection matrix on the column space of XŜ . The
standard residual variance estimator, based on the selected variable, is

σ̂2 =
yT (In − PŜ)y

n − |Ŝ |
.

The above estimator is unbiased when the variables are not selected by data
and the model is correct. However, the situation is completely different when
the variables are selected by the data.
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Example 2: Using the same set up as in Example 1. Let Y = X1 and we fit a
linear regression model using the four selected variables in the set Ŝ , the residual
variance is

σ̂2 =
RSS

n − |Ŝ |
≈

60(1− 0.72)
56

= 0.55. (σ̂ = 0.74).

The error standard deviation is deflated by a factor of more than 1/4.

As a result, in variable selection context, more variables would be declared
statistically significant.
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• Incidental endogeneity.

In a regression setting Y =
∑d

j=1 βjXj + ε, the term “endogeneity” means
that some predictors {Xj} correlate with the residual noise ε.

The conventional sparse model assumes

Y =
d∑

j=1

βjXj + ε, E(εXj) = 0, j = 1, 2, . . . , d,

with a small set S = {j : βj 6= 0}.

The exogenous assumption in E(εXj) = 0 is crucial for validity of most
existing statistical procedures, including variable selection consistency.

This assumption can be easily violated in high dimensions as some variables
{Xj} are incidentally correlated with ε, making most high-dimensional
procedures statistically invalid.
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A quote from Fan, et al. (2014):
Unlike spurious correlation, incidental endogeneity refers to the
genuine existence of correlations between variables unintentionally,
both due to high dimensionality.The former is analogous to find two
persons look alike but have no genetic relation, whereas the latter is
similar to bumping into an acquaintance, both easily occurring in a big
city. More generally, endogeneity occurs as a result of selection biases,
measurement errors and omitted variables.
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Blessing of High Dimensionality

A quote from Yi Ma:
In computer vision, you are routinely dealing with images or videos
that are very high-dimensional. Fortunately, it turns out that when the
dimensionality is high enough, if you have the right computation tool,
you can harness rich redundancy in the data that gives you a very,
very good chance of solving some of the hardest problems in the world.
That’s why its called the blessing of dimensionality.

For example, the main advantage brought by Big Data is to understand the
heterogeneity of subpopulations, such as the benefits of certain personalized
treatments, which are infeasible when sample size is small or moderate.

Big Data allow us to unveil weak commonality across whole population. For
example, the benefit of one drink of red wine per night on heart can be difficult to
assess without large sample size. Similarly, heath risks to exposure of certain
environmental factors can only be more convincingly evaluated when the sample
sizes are sufficiently large.
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Donoho (2000):

• Concentration of Measure. Various large deviation results state that the
probability measures often concentrate on small sets, especially in
high-dimensions. To try to get a commercial slogan out of it, we could say
that in many cases, there are really “few things that matter” and that the
function will be constant on most of the space.

• Dimension Asymptotics. Many results such as asymptotic distributions
already exist in mathematical analysis obtained by letting the number of
dimension go to infinity.

• Approach to Continuum. Many times high dimension data are collected
from objects that are really continuous-space or continuous-time phenomena,
e.g., we are sampling a curve or an image. Therefore, there is an underlying
compactness to the space of observed data which will be reflected by an
increasing simplicity of analysis for large p.
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Consider the case of x1, . . . ,xn i.i.d. ∼ N(0, Id) and let Σ̂ = n−1
∑n

i=1 xixT
i be

the sample covariance matrix (without estimating the mean vector).

Question: Does the distribution of the largest eigenvalue λmax of Σ̂ concentrate
around the true value 1 ?

The answer is YES in fixed dimensions, but how about in high dimensions?

The following are histograms of λmax for n = 100 and different d.
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The histograms show that the distribution shifts further to the right of 1 when d
becomes larger.

Gelman (1980)

As n/d → γ ≥ 1, λmax
a.s−→ (1 + γ−1/2)2.

Johnstone (2001)

As n/d → γ ≥ 1,

nλmax − µnd
σnd

L−→ F1 (Tracy-Widom distribution of order 1)

where µnd = (
√
n − 1 +

√
d)2 and σnd = √µnd(1/

√
n − 1 + 1/

√
d)1/3.

Principal component analysis can fail in high dimensions. The estimated
eigenvectors of leading eigenvalues can have a positive angle with the true
directions asymptotically.
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General Thinking on Dealing with High Dimensionality

An optimal statistical model is characterized by at least the following three
fundamental attributes:

• Parsimony (model simplicity)
• Goodness-of-fit (conformity of the fitted model to the data at hand)
• Generalizability (applicability of the fitted model to describe or predict new

data)

Occam’s Razor: Laws of Parsimony.

Occam’s razor is a philosophical principle credited to the medieval English
philosopher and Franciscan monk William of Ockham (1285-1349).

Principle of Occam’s razor:
Plurality should not be posited without necessity.
Entities should not be multiplied beyond necessity.

Occam’s Razor recommends that we “shave of” extraneous ideas to better reveal
the truth.

A Video on Occam’s Razor: www.youtube.com/watch?v=9XEA3k_QIKo
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Quote from Thomas Aquinas (1225-1274):

If a thing can be done adequately by means of one, it is superfluous to
do it by means of several; for we observe that nature does not employ
two instruments where one suffices.

Quote from Isaac Newton (1643-1727):

We are to admit no more causes of natural things than such are both
true and sufficient to explain their appearances.

Quote from Albert Einstein (1879-1955):

Everything should be made as simple as possible, but not simpler.
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A key idea in high-dimensional modeling is Sparsity.

It is often desirable to build more interpretable models involving fewer variables.

Though sparsity is considered a prior belief, it is often a reasonable one and it can
work beautifully in many applications.

An example: Several methods have been developed to fit linear regression models
with thousands of predictors within seconds, which can work as if the true sparse
model were known in advance.
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Sparsity should be understood more widely in transformed or enlarged feature
spaces: some grouping or transformation of the input variables; enlarge the feature
space by adding interactions and higher order terms to reduce the model bias.

Sparsity can also be viewed in the context of dimensionality reduction by
introducing a sparse representation, for example

• Fama-French three-factor or five factor models
• Use the factor model to reduce the number of effective parameters in

high-dimensional covariance matrix estimation for portfolio selection
• Multivariate reduced-rank estimation
• Matrix completion (Netflix million dollar challenge)
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Fama-French Three-factor Model

In asset pricing and portfolio management, the “FamaâĂŞFrench three-factor model” is
a model designed by Eugene Fama and Kenneth French to describe stock returns. Fama
and French were professors at the University of Chicago Booth School of Business.

The traditional asset pricing model, known formally as the “capital asset pricing
model” (CAPM) uses only one variable to describe the returns of a portfolio or stock
with the returns of the market as a whole. In contrast, the FamaâĂŞFrench model uses
three variables. Fama and French started with the observation that two classes of
stocks have tended to do better than the market as a whole: (i) small caps and (ii)
stocks with a low Price-to-Book ratio (P/B, customarily called value stocks, contrasted
with growth stocks). They then added two factors to CAPM to reflect a portfolio’s
exposure to these two classes :

r = Rf + β3(Km − Rf ) + bs · SMB + bv · HML + α

Here r is the portfolio’s expected rate of return, Rf is the risk-free return rate, and Km
is the return of the market portfolio. The “three factor” β is analogous to the classical
β but not equal to it, since there are now two additional factors to do some of the work.
“SMB” stands for “small minus big” and “HML” for “high minus low”; they measure
the historic excess returns of small caps over big caps and of value stocks over growth
stocks. These factors are calculated with combinations of portfolios composed by
ranked stocks (BtM ranking, Cap ranking) and available historical market data.
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A General Framework of Sparse Modeling

Regularized Estimation Procedure

Goodness-of-Fit + Penalty on Model Complexity

• The goodness-of-fit term can be RSS, negative of the log-likelihood,
empirical risk.

• Bayesian interpretation: the procedure is equivalent to maximum a posterior
(MAP) with a suitably chosen proper or improper prior.

• Important questions: the limit of dimensionality; the role of penalty
function; statistical properties; efficient implementation.
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To be specific, we consider the following probability model {Pθ : θ ∈ Ω}.

Suppose sample Zn = {(xi , yi)}n
i=1 drawn from unknown Pθ0 .

The regularized estimation procedure is

θ̂n ∈ argminθ∈Ω [L(θ;Zn) + λnr(θ)]

The theory to be developed for the regularized estimation procedure includes

• Upper bounds on ‖θ̂n − θ0‖.
• Asymptotic results allowing for (n, p, sk)→∞, where n is the sample size, p

is the dimension of Ω, and sk are the structural parameters, such as sparsity,
rank, etc.
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Examples:

Example 1 (Lasso Regression): Consider the linear regression model

Yn×1 = Xn×pθp×1 + εn×1.

Lasso estimation procedure:

θ̂n ∈ argminθ

[
1
n

n∑
i=1

(yi − xT
i θ)2 + λn

p∑
j=1

|θj |

]
.

Example 2 (Low Rank Matrix Approximation): Consider the multivariate
regression model

Yn×q = Xn×pΘp×q + En×q .

The low rank estimation procedures for Θ:

Θ̂ ∈ argminΘ
[
‖Y −XΘ‖2

F + Pλ(Θ)
]
,

where Pλ(Θ) can be chosen as

λn

p∧q∑
j=1

I (σj(Θ) 6= 0), λn

p∧q∑
j=1

σj(Θ), λn

p∧q∑
j=1

wjσj(Θ).
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Example 3 (Structured Inverse Covariance Matrix Estimation):

Set up: Samples from random vector with sparse covariance Σ or sparse inverse
covariance Θ.

Estimation Procedure:

Θ̂ ∈ argminΘ

[
�

1
n

n∑
i=1

XiXT
i ,Θ� − log det(Θ) + λn

∑
b∈B

‖Θb‖F

]
.
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A Fact on Multivariate Normal.

Claim: Suppose X ∼ Nd(µ,Σ), Θ = Σ−1. If the (i, j)-th component of Θ is zero,
then the i-th component and j-th component of X are conditionally independent.

Proof: The proof is a immediate consequence of the following argument. Note that
if

X =
(
X(1)

X(2)

)
∼ Nd

((
µ(1)

µ(b)

)
,

(
Σ11 Σ12
Σ21 Σ22

))
,

where X(1) is d1-dimensional, and X(2) is d2 = d − d1-dimensional, then

X(1)|X(2) = Nd1 (µ(1) + Σ12Σ−1
22 (X(2) − µ(2)),Σ11.2),

where Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21. Also write Σ22.1 = Σ22 − Σ21Σ−1

11 Σ12. Then

Σ−1 =
(

Σ11 Σ12
Σ21 Σ22

)−1
=
(

Σ−1
11.2 −Σ−1

11 Σ12Σ−1
22.1

−Σ−1
22 Σ21Σ−1

11.2Σ21)−1 Σ−1
22.1

)
.

If Σ−1
11.2 is diagonal, so is Σ11.2.
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Example 4 (Sparse PCA):

Set up: Covariance matrix Σ = ZZT + D, where the leading eigenspace Z has
sparse columns.

Goal: Produce an estimate Ẑ based on samples Xi with covariance matrix Σ.
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