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Statistical Learning

Learning is viewed as generalization/inference problem from usually small sets of
high dimensional, noisy data.

Where shall we start?
(1). Statistical models are essentially to deal with noise sampling and other

sources of uncertainty.
(2). Supervised learning is by far the most understood class of problems.

Regularization provides a fundamental framework to solve learning problems and
design learning algorithms.

In this lecture, we present some ideas and tools which are at the core of several
supervised learning method and beyond.
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Set-up in Decision Theory

Let
X : input or feature variables;
Y : output or outcome variables (continuous, categorical, ordinal, etc.)

The goal is seeking a function f (X) to make a good prediction of the output Y .

Assume that (X ,Y ) follows a fixed but unknown joint distribution P(X ,Y ).
Under general conditions, P(X ,Y ) = P(Y |X)P(X).

A training set of input-output pairs

Tn = {(x1, y1), . . . , (xn , yn)}

consists of i.i.d. samples from (X ,Y ).

Generally speaking, we are looking for a deterministic estimator in a stochastic
environment. Therefore, errors cannot be avoided. How to quantify the error?

Weixing Song STAT 905 September 23, 2014 6/37



Loss Function: A loss function L determines the price L(Y , f (X)) we have to
pay for using f (X) to predict Y .

Examples:

• Square loss (L2-loss): L(y, f (x)) = (y − f (x))2;
• Absolute deviation loss (L1-loss): L(y, f (x)) = |y − f (x)|;
• Lq-loss: L(y, f (x)) = |y − f (x)|q , q > 0;
• Huber loss:

L(y, f (x)) = (y− f (x))2I (|y− f (x)| < δ) + (2δ|y− f (x)| − δ2)I (|y− f (x)| ≥ δ);

• Zero-one loss: L(y, f (x)) = I (y 6= f (x)).
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Figure : 0 − 1, L1, L2, and Huber loss functions
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A good estimator f should give small “error” or “loss”.

This key idea leads us to a criterion for choosing f : Minimizing the expected risk.

Expected Risk (Expected Prediction Error):

R(f ) = E[L(Y , f (X))] =
∫

X×Y
L(y, f (x))p(x, y)dxdy

is called the expected risk or expected prediction error of using f to predict Y ,
which measures the loss averaged over the unknown distribution, or the average
performance of predicting Y using f under loss L.

Usually, the estimator f is constrained to a function space F , and we are
interested in estimating f0 ∈ F such that

R(f0) = inf
f∈F

R(f ).

The minimizer f0 is called the target function.
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In parametric models, the function f0 are characterized by some unknown
parameters, such as the regression coefficients in parametric regression models. In
nonparametric models, f0 might be only assumed to belong to some function
spaces F with certain smooth conditions.

Risk Minimizer for Squared Error Loss: Regression Problem

For squared error loss

R(f ) = E[(Y − f (X))2] =
∫

[y − f (x)]2p(x, y)dxdy = EX EY |X{[Y − f (X)]2|X}.

To minimize R(f ), it suffices to find

f0(x) = argminf EY |X{[Y − f (X)]2|X = x} =⇒ f0(x) = E(Y |X = x).

That is, under the square error loss, the best prediction of Y at any point X = x
is the condition expectation E(Y |X = x), also known as the regression function.
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The regression function f (x) = E(Y |X = x), which minimizes the
expected risk, is given by the mean of the conditional distribution p(y|x0)
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How to estimate the target function E(Y |X = x) with Tn?

• Linear Regression (Parametric Method)

Assume the function class F = {XTβ : β ∈ Rp}.

R(f ) =
∫

[(y − xTβ)2]p(x, y)dxdy

dR(f )
dβ

=
∫

2(xy − xxTβ)p(x, y)dxdy = 2[E(XY )− E(XXT )β]

=⇒ β = [E(XXT )]−1E(XY ).

The least squares method (LS) minimizes the sum of squared error and its
solution amounts to replacing the expectations in the above formula by
averages over data samples.

It is worth distinguishing between the squared error loss from decision theory
and the sum of squares error from LS estimation. We may use more
sophisticated techniques than LS such as regularized LS, but they can all be
combined with the squared error loss for the purpose of making predictions.
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How to estimate the target function E(Y |X = x) with Tn?

• Nearest-neighbor (Nonparametric Method)

The nearest-neighbor methods attempt to directly implement this recipe
using the training data.

At each point x, we might ask for the average of all those yi ’s with input
xi = x. Since there is typically at most one observation at any point x, we
settle for

f̂ (x) = Average(yi |xi ∈ Nk(x)).

Two approximations:

(1). Expectation is approximated by averaging over data samples;
(2). Conditioning at one point is relaxed to conditioning on some

region “close” to the target point.

Under mild conditions, f̂ (x)→ E(Y |X = x) as n, k →∞ and k/n → 0.

However, we will soon see that the method may fail miserably in high
dimensional settings.
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Risk Minimizer for 0-1 Loss: Classification Problem

Suppose Y ∈ K = {1, 2, . . . ,K}. Then

R(f ) = E[L(Y , f (X))] = EX

K∑
k=1

L(k, f (X))P(Y = k|X)

=⇒ f0(x) = argming∈K

K∑
k=1

L(k, g)P(Y = k|X = x)

=⇒ f0(x) = argming∈K[1− P(Y = g|X = x)] = argmaxg∈KP(Y = g|X = x).

This reasonable solution is known as the Bayes classfier which classifies to the
most probable class, using the conditional distribution P(Y |X) (discrete).

The error rate of the Bayes classifier is called the Bayes rate.

Both the k-nearest neighbor method (majority voting) and linear regression
method (dummy variable approach) can be used to estimate this target solution
with training data.
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When K = 2, the probability of misclassifying can be illustrated by the following
figure:
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We already know that

• For square error loss, the optimal f (X) is the conditional expectation
E(Y |X);

• For zero-one error loss, in the classification problem, the optimal f (X) is the
Bayes classifier, or the mode of the conditional probability P(Y = k|X = x).

How about other loss function?

• absolute deviation error loss: f (X) =median(Y |X), the median of the
conditional distribution;

• Huber loss?
• Lq-loss?

Not all loss functions admit explicit solutions.
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Local Method in High Dimensions

To estimate the regression function f (x) = E(Y |X = x),
• linear regression assumes f (x) is well approximated by a globally linear

function, the resulting estimate (LS) is stable but maybe biased;
• the k-nearest neighbor method assumes that f (x) is well approximated by a

locally constant function, the resulting estimate is less stable but less biased.

It seems that with a reasonably large training data set, we could always
approximate the regression function by k-nearest neighbor averaging, since we
should be able to find observations in the close neighborhood of any x and average
them to estimate f (x).

Can we?

Recall the “Curse of Dimensionality”.

Example 1: Suppose n observations are uniformly distributed in a p-dimensional
unit hypercube centered at x0. Consider the construction of a hypercubical
neighborhood of x0 with edge length ep(r) which captures a fraction of r
observations. We know ep(r) = r1/p. For example, e10(0.1) = 0.8.
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Example 2: Suppose n observations are uniformly distributed in a p-dimensional
unit ball centered at x0. Then the median distance from x0 to the closest data
point is d(p,n) = (1− 2−1/n)1/p. For example, d(10, 500) ≈ 0.52. (Hint: The
volume of a p dimensional ball of radius r is V = πp/2rp/Γ(1 + p/2). )

The sampling density is proportional to n1/p. If n = 100 represents a dense
sample for p = 1, then n = 10010 is the sample size required for the sample
sampling density with p = 10.

Example 3: Assume there is a deterministic relationship between Y and X :
Y = f (X) = exp(−8‖X‖2), X is uniformly distributed on [−1, 1]p. Suppose we
have n = 1000 training samples T = {(xi , yi) : i = 1, 2, . . . , 1000}. If we use the
1-nearest neighbor rule to predict y0 at x0 = 0. Then

MSE(x0) = ET (y0 − ŷ0)2 = ET [f (x0)− ŷ0]2

= ET [ŷ0 − ET ŷ0]2 + [ET ŷ0 − f (x0)]2

= VarT (ŷ0) + Bias2(ŷ0).

For small p, both bias and variance are small. As p increases, the nearest neighbor
is further and further away from the target, inducing both bias and variance. For
large p, the bias tends to −1 and the variance decreases.
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The implications of the previous examples for local methods in high dimensions:

• The complexity of the target can grow exponentially with the dimension, so
does the “difficulty level” of estimation.

• If we wish to be able to estimate such functions with the same accuracy or
precision as functions in low dimensions, then we need the size of our
training set to grow exponentially as well.

• In reality, we have very sparse samples in high dimensional space. The
nearest neighbor methods may fail us miserably.

Weixing Song STAT 905 September 23, 2014 22/37



Now, assume a linear relationship between Y and X : Y = XTβ + ε, where
ε ∼ N(0, σ2). WLOG, assume that EX = 0.

Suppose we have n training examples T = {(xi , yi) : i = 1, 2, . . . ,n}.

Consider a test point x0 and the prediction value ŷ0 = xT
0 β̂. Note that

EPE(x0) = Ey0|x0 ET (y0 − ŷ0)2

= Var(y0|x0) + ET [ŷ0 − ET (ŷ0)]2 + [ET ŷ0 − f (x0)]
= σ2 + VarT (ŷ0) + 0.

For large n,
Ex0EPE(x0) = σ2

[
1 + O

( p
n

)]
.

The above result implies: the expected EPE increases linearly in p, with slope
σ2/n; the growth is slow if σ2/n is small, therefore, the curse of dimensionality is
alleviated.
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Implications on Mitigating the Curses of Dimensionality

• By relying on rigid assumptions, the linear model has no bias at all and
negligible variance, which the error in k-nearest neighbor methods can be
substantially larger.

• By imposing some heavy restrictions on the class of models being fitted, the
curse of dimensionality may be mitigated.

• Even in low dimensions, there are many cases where more structured
approaches can make more efficient use of the data.

• However, if the assumptions are wrong, all bets are off and local method may
dominate.

• A whole spectrum of methods between the rigid linear models and the
extremely flexible nearest neighbor models, each with their own assumptions,
biases and variances, have been proposes specifically to avoid the exponential
growth in complexity of function in high dimensions.
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Empirical Risk Minimization

Notations:

• P(X ,Y ): joint probability distribution of (X ,Y );
• Tn : a training data set of size n;
• L(Y , f (X)): loss function;

• R(f ) =
∫

X×Y L(y, f (x))p(x, y)dxdy: the expected risk;

• f0 = inff∈F R(f ): the target function.

Usually, f0 can not be obtained explicitly.

We want to find “good” learning algorithm A(Tn) = fn ∈ F , a map from the
training set to a set of candidate functions, to minimize the “empirical risk”.
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The Empirical Risk Function is defined as

R̂(f ) =
1
n

n∑
i=1

L(yi , f (xi))

which is a natural estimate (empirical version) of the risk function R(f ).

A common framework for estimating the best function f0 is using the empirical
risk minimizer

f̂ = argminf∈F R̂(f ).

This framework covers the commonly used methods:
• Least squares estimation (LSE) using squared error loss;
• Maximum likelihood estimation (MLE) using negative log-likelihood loss;
• Support vector machine (SVM) using the hinge loss

L(Y , f (X)) = max(0, 1−Yf (X)) for classification in machine learning.
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Is minimizing empirical risk on the data always a good idea? The answer is NO.

Solving the empirical risk minimization (ERM) typically requires that p ≤ n. We
have already seen that the ERM can be worse when the dimensionality p is large
compared to the sample size n or even fails when p > n (e.g., for ordinary LSE
and MLE).

Then, how to improve ERM?
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Penalized Empirical Risk Minimization

What is a “good” learning method/algorithm?

• Is the algorithm consistent?
The algorithm gets better as we get more data.

• Is the algorithm generalizable?
The training error for the solution must converge to the expected error and
thus be a “proxy” for it. Otherwise, the solution would not be “predictive”.

• Is the algorithm stable (robust)?
f̂n should depend continuously on the training set Tn . In particular, changing
one of the training points should affect less and less the solution as n goes to
infinity.

An optimization method is well-posed if its solution exists, is unique, and stable.
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Example 1: Generalizability

Example 2: Stability
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Example 3: Stability
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How to Achieve Generalizability and Stability?

• In statistical learning, choosing a suitable space of F is a foremost task. For
many algorithms, such as optimization algorithms, it is the space the
algorithm is allowed to search. If is often important to choose F as a
function of the amount of available data.

• A generally ill-posed problem such as ERM, can be guaranteed to be
well-posed and therefore stable by an appropriate choice or restriction of F .
Also the same restrictions may also result in predictability.

• Regularization is the solution!
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Regularization: Penalized Empirical Risk Minimization

Regularization is an extremely useful way to restore well posedness and ensure
generalizability by constraining the function space F .

Some form of regularized empirical risk minimization produces sparse estimates in
high dimensions; it also helps prevent overfitting.

A common regularization framework for high-dimensional data: using the
regularized/penalized empirical risk minimization:

f̂ = argminf∈F{R̂(f ) + pλ(f )},

where R̂(f ) = n−1
∑n

i=1 L(yi , f (xi)) is the empirical risk function, and pλ(f ) is
called regularizer or penalty function on the complexity of function f with
regularization parameter λ ≥ 0.
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We will mainly follow this framework in this course, such as in the area of
high-dimensional variable selection. I hope this course will provide us some
answers to the following three important questions:
(1). What is the role of penalty function in variable selection? (Intuition)
(2). What are the statistical properties of the regularized estimator? (Theory)
(3). How can we efficiently implement the regularization methods?

(Implementation)

We will also discuss some other recent high-dimensional inference methods which
are closely related to the regularization methods.
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