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Classical Linear Regression

Suppose
• Y : output or outcome variable;
• X = (X1,X2, . . . ,Xp)T : input or feature variables;
• Model: E(Y |X) = f (X) = β0 +

∑p
j=1 Xjβj .

The βj ’s are unknown parameters /coefficients.

The input variables Xj ’s may come from various sources:
• quantitative inputs;
• transformations of original inputs, e.g., log or square-root transformation of

length, area and volume;
• bases expansions, e.g., X1, X2

1 , . . .; Fourier or wavelet basis functions;
• dummy coding of qualitative (categorical) inputs, e.g. X1 = I (non-smoker),

and X2 = I (smoker);
• interactions between variables, e.g., X3 = X1X2.

More generally, we model E(Y |X) using linear combinations of fixed
linear/nonlinear functions of the input variables. The key is that the model is
linear in the parameters.
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We assume the a set of i.i.d. input-output pairs

Tn = {(x(i), yi) : 1 ≤ i ≤ n}

where x(i) = (xi1, xi2, . . . , xip)T ∈ Rp and yi ∈ R, are drawn from the following
linear regression model

yi = β0 + xi1β1 + · · ·+ xipβp + εi , 1 ≤ i ≤ n.

The following notation will be repeatedly used in the sequel.

• Response: y = (y1, y2, . . . , yn)T ;
• Predictors: xj = (x1j , . . . , xnj)T for j = 1, 2, . . . , p;
• Residuals: ε = (ε1, . . . , εn)T ;
• Design matrix: X = (x0,x1, . . . ,xp) with x0 = 1;
• Regression coefficients: β = (β0, β1, . . . , βp)T .

Thus the linear regression model can be written as

y = Xβ + ε.
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Least Squares Estimation (LSE)

The most popular estimation method is LSE, in which we pick the coefficient β to
minimize the residual sum of squares (RSS):

RSS(β) =
n∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

= (y−Xβ)T (y−Xβ).

In the supervised learning problems as regression, we usually do not seek to model
the distribution of the input variables. Thus the predictors always appear in the
set of conditioning variables.

The above criterion is reasonable as long as yi ’s are conditionally independent
given the inputs x(i).
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Well-known Results of LSE

Suppose that rank(X) = p + 1. Then LSE of β is given by

β̂ = (XTX)−1XTy.

The fitted value of y is
ŷ = X(XTX)−1XTy.

Notes:

• The quantity X+ = (XTX)−1XT is known as the Moore-Penrose
pseudo-inverse of the matrix X. It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if X is square and
invertible, then X+ = X−1.

• The qunatity H = X(XTX)−1XT is known as the “hat” matrix. What is
trace(H)?

• The resulting estimate ŷ is the orthogonal projection of y onto the column
space of X.

• If X is not full rank, e.g., p > n, then the LS solution is not unique.
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Assume that yi ’s are uncorrelated, have constant variance σ2, and x(i) are fixed.

Then we can show that

• Eβ̂ = β, where β denotes the true value of the regression coefficient.
• Cov(β) = σ2(XTX)−1.
• Gauss-Markov Theorem: Among all linear unbiased estimators of aTβ, the

least squares estimator aT β̂ has the smallest variance. (a is a (p + 1) real
valued vector)
Proof:
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Mean Squared Error (MSE): For an estimator θ̂ of θ,

MSE(θ̂) = E(θ̂ − θ)2 = Var(θ̂) + [E(θ̂)− θ]2.

Gauss-Markov Theorem implies that the LSE has the smallest MSE among all
linear estimators with no bias.

Question: Is it possible to achieve a smaller MSE or better prediction accuracy
by considering biased estimators?
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Estimator of σ2:

σ̂2 =
(y−Xβ̂)T (y−Xβ̂)

n − p − 1
= MSE

σ̂2 is an unbiased estimator of σ2.

Proof:
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To draw inferences about the parameters and the model, we now assume εi i.i.d.
∼ N(0, σ2).

Then we have

• Maximum likelihood estimates of β an σ2.

β̂ = (XTX)−1XTy, σ̂2 = RSS/n.

• Distribution of β̂

β̂ ∼ N(β, σ2
(
XTX)−1

)
,

RSS
σ2 ∼ χ2

n−p−1.

• The test statistic for checking H0 : L′β = c:

L′β̂ − c√
MSE · L′(XTX)−1L

∼ tn−p−1.
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Matrix Decomposition

QR decomposition.

Suppose an n × r matrix A satisfying rank(A) = r , then A = QR, where Q is an
n × r matrix such that QT Q = I , and R is an r × r upper triangular matrix with
positive diagonal elements.

Gram-Schmidt Orthogonalization.

Suppose A = (a1,a2, . . . ,ar ), where aj ’s are n × 1 vectors.

• Set z1 = a1;

• Set z2 = a2 − <a2,z1>
<z1,z1>

z1;

• Set z3 = a3 − <a3,z2>
<z2,z2>

z2 − <a3,z1>
<z1,z1>

z1;

• · · · · · · · · · ;

• Set zr = ar −
<ar ,zr−1>
<zr−1,zr−1>

zr−1 − · · · − <ar ,z1>
<z1,z1>

z1;
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Let

a1 = z1; a2 =
< a2, z1 >

< z1, z1 >
z1 + z2;

· · · · · · · · ·

ar =
< ar , z1 >

< z1, z1 >
z1 + · · ·+

< ar , zr−1 >

< zr−1, zr−1 >
zr−1 + zr .

Define ei = zi/‖zi‖. Note that ‖zi‖ =< ai , ei >, then

a1 =< a1, e1 > e1; a2 =< a2, e1 > e1+ < a2, e2 > e2;
· · · · · · · · ·
ar =< ar , e1 > e1 + · · ·+ < ar , er−1 > er−1+ < ar , er > er .

This leads to
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Singular Value Decomposition (SVD).

Let A be an m × n real matrix. There exist two orthonormal matrices Um×m ,
Vn×n such that

A = UDV T ,

where
D =

(
diag(σ1, σ2, · · · , σr ) 0

0 0

)
m×n

, r = rank(A).

How to find U ,V ,D?
• U : the orthonormal eigenvectors of AAT ;
• V : the orthonormal eigenvectors of AT A;
• σ2

i ’s: the nonzero-eigenvalues of AAT or AT A.

Usually, we write
A = U1D1V T

1

where U1 consists of the first r columns of U , and V1 consists of the first r
columns of V , D1 = diag(σ1, σ2, · · · , σr ).
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Regression by Successive Orthogonalization

• Initialization: z0 = x0 = 1;
• Successive Orthogonalization: For j = 1, 2, . . . , p,

Regression xj on z0, z1, . . . , zj−1 to produce coefficient
γjl =< xj , zl > / < zl , zl > for l = 0, 1, . . . , j − 1 and the residual vector
zj = xj −

∑j−1
l=0 γ̂ljzl .

• Regress y on the residual zp gives the LSE β̂p.

This is known as the Gram-Schmidt procedure for regression.

Questions:

• Why does this work?
• What does it imply?
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An illustration
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Some Remarks:

• The orthogonalization does not change the subspace spanned by the
predictors;

• The zj are all orthogonal, and they form a basis for the column space of X;
• Regressing y on zj ’s also produces the orthogonal projection of y onto the

column space of X;
• Since zp along involves xp, we see that regressing y on zp produces the LSE

of βp;

• Moreover, this implies that the LSE β̂j can be obtained by regressing y on
ej , where ej is the residual vector by regressing xj on the other predictors;

• That is, the multiple regression coefficient β̂j represents the additional
contribution of xj on y, after xj has been adjusted by the other predictors,
including the intercept.
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From the step of Successive Orthogonalization, it can be easily shown that
X = ZΓ, where

Z = (z0, z1, z2, · · · , zp), Γ =


1 γ̂10 γ̂20 · · · γ̂p−1,0 γ̂p,0
0 1 γ̂21 · · · γ̂p−1,1 γ̂p,1
...

...
...

...
...

...
0 0 0 · · · 1 γ̂p,p−1
0 0 0 · · · 0 1


Let D be the (p + 1)× (p + 1) diagonal matrix with ‖zj‖ on the diagonal,
Q = ZD−1 and R = DΓ. Then X = QR gives the QR-decomposition of X.

We can show that
β̂ = R−1QTy, ŷ = QQTy.
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Questions:

• What happens if some predictors are highly correlated?
• What if we consider the singular value decomposition (SVD) of X?

The LSE has the smallest MSE among all unbiased linear estimators. However, it
is possible to achieve a smaller MSE or better prediction accuracy by considering
biased estimation. In other words, it is possible to trade a little bias for a large
reduction in variance.

In fact, biased estimates are commonly used in practice. One popular method is
called ridge regression. It is in fact closely related to the SVD method.
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In this section, we will try to answer the following questions:

• What is shrinkage estimation?
• How does shrinkage estimation arise?
• What is the rational behind shrinkage estimation?
• Wiener filter and ridge regression.
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The Wiener Filter

Wiener filtering is a classical estimation problem in the electrical engineering. The
example introduced here will play a pedagogical role as it wonderfully presents
some key ideas covered in this course.

We will see how a shrinkage method naturally arises in an estimation problem.

Problem Set-up: We wish to recover a Gaussian signal Z = (Z1, . . . ,Zn)T from
noisy data Y = (Y1, . . . ,Yn)T of the form

Yi = Zi + Ei , i = 1, 2, . . . ,n,

where Y is the observed process, Z is the signal, which is assumed to be a
Gaussian process with mean zero and covariance matrix Σ, i.e. Z ∼ MVN(0,Σ),
and E = (E1, . . . ,En)T is Gaussian white noise, i.e., E ∼ MVN(0, σ2I ), which is
independent of the signal X .

One may view this as a Bayesian estimation problem where the prior on the
unknown signal is Gaussian.

Goal: reconstruct the signal by producing an estimator Ẑ = g(Y ), which can be
computed from data.
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Suppose square loss function is adopted. That is, we are looking for Ẑ minimizing
the MSE:

MSE(Z , Ẑ) = E‖Z − Ẑ‖2
2 = E

n∑
i=1

(Zi − Ẑi)2.

We can show that the estimator which achieves the minimum MSE is the
conditional expectation of Z given the observed process Y : Ẑ = E(Z |Y ). In
detail, the i-th component is given by

Ẑi =
∫
Rn

zipZ|Y (z)dz.

Can we analytically evaluate the conditional expectation?

The computation of the desired conditional expectation can be greatly simplified
by means of the principal component analysis (PCA).

The key is to use principal component analysis to decompose a Gaussian process
as a superposition of its principal components, which are independent each other.
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(Population) Principal Component Analysis

Suppose a random vector Z has covariance matrix Σ with its
eigenvalue-eigenvector pairs (d2

i ,ui), where d2
1 ≥ · · · ≥ d2

n .

Define D = diag(d2
i ), U = (u1, · · · ,un). Then Σ = UDUT .

The i-th principal component is defined as

Z∗i = uT
i Z , i = 1, 2, . . . ,n.

Thus,
Z∗ = UT Z .

Questions:

• Var(Z∗i ) =? d2
i

• Cov(Z∗i ,Z∗j ) =? 0

•
∑n

i=1 Var(Z
∗
i ) =?

∑n
i=1 d2

i
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PCA is the action of decomposing a process Z as a superposition of its principal
components. The analysis consists of two steps:

Analysis Step: Find the orthonormal eigenvectors ui ’s and construct the
principal components,

Z∗i = uT
i Z , Z∗ = UT Z .

Synthesis Step: Reconstruct the process for the principal components
using the orthonormal eigenvectors,

Z = UZ∗, Zi =
n∑

k=1

Z∗k uk(i).
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Now, let’s get back to the estimation problem.

By the definition of principal components, we have Cov(Z∗) = D. Therefore, the
Z∗i are independent in the case where Z is Gaussian.

Now, we “rotate” the observation vector Y in the orthonormal basis of principal
components by

UT Y = UT Z + UT E,=⇒ Y ∗ = Z∗ + E∗.

If we denote E∗i the i-th entry of E∗. Then

Z∗i ∼ N(0, d2
i ), E∗i ∼ N(0, σ2).

Also, Z∗i and E∗i are independent.

Note that ‖Z − Ẑ‖ = ‖Z∗ − Ẑ∗‖, so to estimate Z , we may just to estimate Z∗ by
any estimator Ẑ∗. The synthesis step would provide the reconstruction Ẑ = UẐ∗.

Obviously, the problem has not changed and we merely looking at it from a
different perspective.
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Can we compute UẐ∗ or Ẑ∗ now?

Ẑ∗i = E(Z∗i |Y ∗) = E(Z∗i |Y ∗i ) =
d2

i
d2

i + σ2 Y ∗i .

Denote

Λ = Diag
(

d2
i

d2
i + σ2

)
.

Then Ẑ∗ = ΛY ∗ = ΛUT Y .

Finally, we see that the Wiener estimator of Z is given by

Ẑ = UẐ∗ = UΛUT Y .
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The Wiener filter transforms the data with respect to the ortho-basis of principal
components, and downweights each coefficient as a function of the signal-to-noise
ratio since one can think of the coordinates of the weights as the ratio between the
expected signal power and the expected (signal+noise) power. So, Wiener filter
performs shrinkage estimation.

Here, both the shrinkage and the estimation procedure are linear.

The Wiener filter is optimal for Gaussian. In the non-Gaussian case, however, the
estimator is only guaranteed to have minimum MSE among all linear estimators.

This estimation scheme can be summarized as
Transformation — Shrinkage — Reconstruction.
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Question: What if Z does not follow a multivariate normal distribution?

Suppose Z ∼ g(z), and Y |Z = z ∼ ezT y−ψ(z)f0(y), where f0(y) is the density of
Y |Z = 0. Then Bayes rule provides the posterior density of Z given Y ,

p(z|y) = ezT y−λ(y)[g(z)e−ψ(z)], where λ(y) = log
( f (y)

f0(y)

)
which represents an exponential family with canonical parameter y and cumulant
generating function λ(y). So

E(Z |Y = y) = λ′(y), Var(Z |Y = y) = λ′′(y).

This is the so called Tweedie’s formula.

For example, if Z ∼ N(0,Σ), E ∼ N(0, σ2I ), then Y |Z = z ∼ N(Z , σ2I ). Using
Tweedie’s formula, we have

E(Z |Y ) = Y − σ2(σ2I + Σ)−1Y = Σ(σ2I + Σ)−1Y .
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Ridge Regression

Consider linear regression model:

yi = xi1β1 + . . .+ xipβp + εi , 1 ≤ i ≤ n.

• Response: y = (y1, . . . , yn)T

• Predictors: xj = (x1j , . . . , xnj)T , j = 1, 2, . . . , p.
Design Matrix: X = (x1, . . . ,xp)

• Error: ε = (ε1, . . . , εn)T

• Regression Coefficient: β = (β1, . . . , βp)T

The linear regression model in matrix form:

y = Xβ + ε.

We know that the LSE is not satisfactory.

Let’s now perform a special type of shrinkage estimation called ridge regression.
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WLOG, we assume that the response and predictors are centered and the
predictors are standardized as follows:

n∑
i=1

yi = 0, 1Ty = 0

n∑
i=1

xij = 0, 1Txj = 0, 1TX = 0

n∑
i=1

x2
ij = n, xT

j xj = n, j = 1, 2, . . . , p.

There is no intercept in the regression model.

Each predictor is standardized to have the same magnitude in L2. So the
corresponding regression coefficients are “comparable”.

After model fitting, the results can be readily transformed back to the original
scale.
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Recall in decision theory, we introduced the idea of adding a regularization term to
an error function in order to control over-fitting and achieve smaller predictor risk.

In regression, the traditional penalized method is the ridge regression that uses
the L2-norm of the coefficients as penalty.

Originally, it was proposed to regularize ill-conditioned design matrices in linear
regression.

Ridge Citerion:

β̂ridge(λ) = argminβ{‖y−Xβ‖2 + λ‖β‖2}.

Ridge Estimator:
β̂ridge(λ) = (XTX + λI )−1XTy.

Proof: (Matrix derivative and data augmentation)
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With the choice of quadratic penalty βTβ, the ridge estimator is again a linear
function of y.

The solution adds a positive constant to the diagonal of XTX before inversion.
This makes the problem nonsingular, even if X is not of full column rank, and was
the main motivation when ridge regression was first introduced. See Hoerl and
Kennard (1970).

For any λ ∈ [λmin, λmax], we have a solution path

{β̂ridge(λ) : λ ∈ [λmin, λmax]}.

The optimal λ and hence the optimal solution has to be selected by some
information criteria or cross validation methods, which will be discussed later.
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Ridge Regression: Examples

Example 1: Consider the linear regression model

yi =
p∑

j=1

xijβj + εi , 1 ≤ i ≤ n,

where ε ∼ N(0, 1.52), p = 100.

Generate zij ’s and w independently from N(0, 1), let

xij = zij + w, 1 ≤ j ≤ 4, xi5 = zi5 + 2w, xi6 = zi6 + w,

and xij = zij for j ≥ 7.

Let (β1, β2, β3) = (2, 1,−1) and βj = 0 for j ≥ 4.
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To implement the ridge estimation for the above example, we use the R-package
ncvreg. A sample R-code is

Remark: The ncvreg pacakge is built upon the work by Breheny and Huang (2011).
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Example 2 (Prostate Data): The data is from a study by by Stamey et al. (1989)
to examine the association between prostate specific antigen (PSA) and several
clinical measures that are potentially associated with PSA in men who were about
to receive a radical prostatectomy. The variables are as follows:

• lcavol: Log cancer volume
• lweight: Log prostate weight
• age: The man’s age
• lbph: Log of the amount of benign hyperplasia
• svi: Seminal vesicle invasion; 1=Yes, 0=No
• lcp: Log of capsular penetration
• gleason: Gleason score
• pgg45: Percent of Gleason scores 4 or 5
• lpsa: Log PSA
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To implement the ridge estimation for the above example, we use the R-package
ncvreg. A sample R-code is
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We can also use the R-package glmnet to do ridge regression. A sample R-code is
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The ridge regression method can be viewed as a Bayesian regression approach.

RR as Bayesian Regression

If β ∼ N(0, σ2I/λ), and y|X ∼ N(Xβ, σ2I ), then

E(β|y) = (XTX + λI )−1XTy.

Proof: Consider a general case. Suppose β ∼ N(µ,Λ−1), and
y|β ∼ N(Xβ + b,L−1). Let Z = (βT ,yT )T , then the log-likelihood function of Z
is given by

log f (z) = −
1
2

(β − µ)T Λ(β − µ)−
1
2

(y−Xβ − b)T L(y−Xβ − b) + const.

= −
1
2
βT Λβ + βT Λµ−

1
2
yT Ly−

1
2
βTXT LXβ

+yT LXβ + yT Lb − βTXT Lb + const.

= −
1
2
(
βT Λβ + yT Ly + βTXT LXβ − 2yT LXβ

)
+
(
βT Λµ+ yT Lb − βTXT Lb

)
+ const.
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Let
R =

(
Λ + XT LX −XT L
−LX L

)
.

Then

log f (z) = −
1
2

ZT RZ + ZT
(

Λµ−XT Lb
Lb

)
+ const.

= −
1
2

ZT RZ + ZT RR−1
(

Λµ−XT Lb
Lb

)
+ const.

Note that

R−1
(

Λµ−XT Lb
Lb

)
=
(

Λ−1 Λ−1XT

XΛ−1 L−1 + XΛ−1XT

)(
Λµ−XT Lb

Lb

)
=
(

µ
Xµ+ b

)
.

This implies

Z =
(
β
y

)
∼ N

((
µ

Xµ+ b

)
,

(
Λ−1 Λ−1XT

XΛ−1 L−1 + XΛ−1XT

))
Therefore,

E(β|y) = µ+ Λ−1XT (L−1 + XΛ−1XT )−1(y−Xµ− b).

Let Λ = λI/σ2, L = I/σ2, µ = 0, b = 0. After some matrix computation, one can
prove the desired result.
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Ridge Regression: Relation to SVD

Suppose the SVD of X is given by X = UDVT , where UTU = I , VTV = I , and
D = diag(di).

Then we can rewrite the ridge estimator as

β̂ridge(λ) = (XTX + λI )−1XTy

= (VD2VT + λI )−1VDUTy = V(D2 + λI )−1DUTy,

and
Xβ̂ridge(λ) = UD(D2 + λI )−1DUTy.

Also, note that

β̂ridge(λ) = (XTX + λI )−1(XTX)(XTX)−1XTy = (XTX + λI )−1(XTX)β̂LS

= (VD2VT + λI )−1VD2VT β̂LS = V(D2 + λI )−1D2VT β̂LS,

So
‖β̂ridge‖ ≤ ‖VT β̂LS‖ = ‖β̂LS‖.
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Ridge Regression: MSE, Bias and Variance Trade-off

MSE of Ridge Regression

Let Σλ = (XTX + λI ). Then

E‖β̂ridge(λ)− β‖2 = λ2βT Σ−2
λ
β + σ2trace(Σ−1

λ
XTXΣ−1

λ
).

Note that XTX + λI = V(D2 + λI )VT , so

(XTX + λI )−1 = V(D2 + λI )−1VT =
p∑

i=1

1
d2

i + λ
vivT

i .

Also

trace(Σ−1
λ

XTXΣ−1
λ

) = trace(Σ−2
λ

XTX) = trace(V(D2 + λI )−2VTVD2VT )

=
p∑

i=1

d2
i

(d2
i + λ)2 .
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Hence,

E‖β̂ridge(λ)− β‖2 =
p∑

i=1

λ2(βTvi)2 + σ2d2
i

(d2
i + λ)2 .

Recall that

E‖β̂LS − β‖2 = σ2trace((XTX)−1) =
p∑

i=1

σ2

d2
i
.

Exercise: Show that if 0 < λ < 2σ2

βT β
, then

E‖β̂ridge(λ)− β‖2 < E‖β̂LS − β‖2.
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Principal Component

Suppose each column vector in the design matrix X has already been centered.
Therefore, the sample covariance matrix of p predictors is XTX/n.

Based on the SVD of X = UDVT , we have

XTX = (UDVT )T (UDVT ) = VD2VT .

The eigenvectors of XTX, vj ’s, are called principal component direction of X.

It is easy to see that zj = Xvj = djuj . Hence uj is simply the projection of the
row vector X, i.e., the input predictor vectors, on the direction vj , scaled by dj .

zj = Xvj = djuj , j = 1, 2, . . . , p, are called the principal components of X.

The first principal component of X has the largest sample variance among all
normalized linear combinations of the columns of X. In fact, the sample variance
of the first component is d2

1/n; the second d2/n; and so on. The covariance of
different principal components is 0.
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Principal Component Regression

Principal component regression (PCR) is the regression of y against k(≤ p)
principal components of X. In other words, the design matrix in PCR is

[Xv1, . . . ,Xvk ] = XVΦ,

where Φ = [Ik×k ,0k×(p−k)]T .

The PCR fitted response can be shown as

ŷPCR = XVΦ(ΦTVTXTXVΦ)−1ΦTVTXTy =
k∑

i=1

(uT
i y)ui .

It is also easy to show that the fitted response based on LSE and ridge regression
estimator are

ŷLSE =
p∑

i=1

(uT
i y)ui , ŷridge =

p∑
i=1

d2
i

d2
i + λ

(uT
i y)ui .
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Ridge Regression: Relation to PCR

Principal component regression forms the derived input variable by performing a
PCA of the original variables. If the original variables are highly correlated, then
only a few principal components are kept. Then the response y is regressed on the
few derived variables.

Therefore, the principal components regression is very similar to ridge regression:
both operate via the principal components of the input matrix.

Ridge regression shrinks the coefficients of the principal components, shrinking
more depending on the size of the corresponding eigenvalue; principal components
regression discards some principal component with smallest eigenvalues.

The difference is between shrinkage and hard-threshholding. There is another
commonly used method called soft-threshholding, which is related to lasso
methods we will dive into.
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Some Further Remarks:

• Ridge regression protects against the potentially high variance of gradients
estimated in the short directions. The implicit assumption is that the
response will tend to vary most in the directions of high variance of the
inputs. A related method is called principal component regression.

• We have demonstrated that using shrinkage estimation can alleviate
overfitting and achieve better prediction performance.

• There are mainly two reasons why we are often not satisfied with the LSE:
(a). Prediction: the LSE often have low bias but large variance;
(b). Interpretation: The model is hard to interpret with a large number
of predictors.

• Ridge regression addresses the first, but it does not perform variable
selection.

Question: How to perform variable selection.
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Inverse of Block Matrix
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