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High-dimensional Sparse Models

We have demonstrated that when the number of covariates p is large compared
with the sample size n, estimation and prediction using the full model of all p
covariates may not perform well or can even fail due to:

• the noise accumulation, high collinearity and spurious correlation,
• lack of model identifiability and interpretability,
• computational difficulty and instability.

Ridge regression addresses some of the issues, but it does not perform variable
selection. It can be advantageous to impose some sparse model structure and
generate a sequence of sparse candidate models using, e.g., variable selection
methods.
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Best Subset Regression

A natural idea of producing sparse models is the best subset regression/selection.

The best subset regression/selection has two steps:
(a). For each submodel M ⊂ {1, 2, . . . , p} consisting of covariates Xj ’s with
indices in M , apply a model fitting procedure such as the LSE or MLE to the
submodel (recall the empirical risk minimization).
(b). Select the best submodel among the fitted ones using a model selection
criterion such as the AIC, BIC, ect..

The idea of best subset regression is appealing in producing the best sparse model
but one has to fit a total of 2p sparse models, that is, all submodels of {1, 2, . . . , p}.

It is infeasible to implement the method even in moderate dimensions in tens; its
computational complexity grows exponentially with the dimensionality p.

The method suffers from the instability due to the sampling variability and
discontinuity; it can happen that different models can be selected both with
significant probability.
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Ideally we want a modeling procedure to produce a unique, appealing model with
significant probability, say, with asymptotic probability one.

We want to develop effective sparse modeling procedures that retain appealing
theoretical properties of the best subset selection and can be fitted with
computationally efficient algorithms.

We also want the estimated model to be stable.

We will discuss some recent developments in high-dimensional variable selection
that aim at these goals in this course.
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In many applications, we assume (in correctly specified models) that the
conditional distribution of the response variable Y given the covariate vector
X = (X1,X2, . . . ,Xp)T depends on X only through a form of the linear form βT X
with β = (β1, . . . , βp)T , a p-vector of regression coefficients.

Some βj ’s are assumed to be zeros and we refer to the corresponding covariates as
the noise variables.

The covariates with nonzero βj ’s are referred to as the true (important) variables.

Variable selection aims to identify all important variables and provide efficient
estimation of their coefficients.
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Variable Selection vs. Model Selection

More generally, assume that the data are generated from the true density function
fθ0 with parameter vector θ0 = {θ1, . . . , θp}T .

Often times we are uncertain about the true density, but more certain about a
large family of models fθ , where θ0 is a nonvanishing subvector of the
p-dimensional parameter vector θ.

The problems of how to estimate the dimension of the model and compare models
of different dimensions naturally arise in many statistical applications, including
time series modeling.

These problems are referred to as model selection in the literature.

In short, variable selection is concerned with how to build a sequence of good
sparse candidate models, while model selection is concerned with how to compare
those models.
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There are two classical principles of model selection: the Kullback-Leibler (KL)
divergence principle and the Bayesian principle.

Akaike (1973, 1974) proposed to choose a model that minimizes the KL divergence
of the fitted model from the true model, or equivalently maximize the expected
log-likelihood.

KL divergence of the density f from the density g can be fitted as

I (g; f ) = Eg

[
log

g(z)
f (z)

]
=
∫

[log g(z)]g(z)dz −
∫

[log f (z)]g(z)dz.
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Model Selection Criteria: AIC

Akaike (1973) considered the MLE θ̂ = (θ̂1, . . . , θ̂p)T of the parameter vector θ
and showed that up to an additive constant, the KL divergence of the fitted model
from the true model can be asymptotically expanded as

−ln(θ̂) + dim(θ̂) = −ln(θ̂) +
p∑

j=1

I (θ̂j 6= 0),

where ln(θ) is the log-likelihood function, dim(θ) denotes the dimension of the
model.

This asymptotic expansion leads to the Akaike information criterion (AIC) for
comparing models:

AIC(θ̂) = −2ln(θ̂) + 2‖θ̂‖0.
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Model Selection Criteria: BIC

A typical Bayesian model selection procedure is to first give nonzero prior
probability αM on each model M , and then prescribe a prior distribution µM for
the parameter vector in the corresponding model. See Schwarz (1978).

The Bayesian principle of model selection is to choose the most probable model a
posteriori; that is, to choose a model that maximizes the log-marginal likelihood
or the Bayes factor

log
∫

αM exp[ln(θ)]dµM (θ).

Schwarz (1978) took a Bayesian approach with prior distributions that have
nonzero prior probabilities on some lower dimensional subspaces of Rp and showed
that the negative log-marginal likelihood can be asymptotically expanded as

−ln(θ̂) +
log n
2
‖θ̂‖0,

where ln(θ̂) is the maximum log-likelihood.

This asymptotic expansion leads to the Bayesian information criterion (BIC) for
comparing models:

BIC(θ̂) = −2ln(θ̂) + log(n)‖θ̂‖0.
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For the normal linear regression model,

AIC =
1

ns2 (RSSd + 2ds2),

and
BIC =

1
n

(RSSd + ds2 log(n)),

where RSSd is the residual sum of squares (RSS) of the linear regression with d
predictors (d ≤ p), s2 is the MSE of the full model.
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L0-Penalized Likelihood

AIC and BIC suggest a unified approach to variable selection and model selection:
choose a parameter vector θ that minimizes the penalized log-likelihood

− ln(θ) + λ‖θ‖0, (1)

where the L0-norm ‖ · ‖0 denotes the number of nonzero components and λ ≥ 0 is
a regularization parameter.

Given ‖θ‖0 = m, the solution to problem (1) is the best subset that has the
largest maximum likelihood among all subsets of size m.

The model size m is then chosen to maximize (1) among p best subsets of sizes m,
1 ≤ m ≤ p.

The L0-penalized likelihood method is equivalent to the best subset selection.

The computation of the L0-regularization problem (1) is a combinatorial problem
with NP-complexity.
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L0-Penalized Empirical Risk Minimization

More generally, we have a unified approach of L0-penalized empirical risk
minimization for variable selection and model selection:

minθ∈Rp
{

R̂(θ) + λ‖θ‖0
}
, (2)

where R̂(θ) is the empirical risk function, which could be:

• The negative log-likelihood loss: equivalent to L0-penalized likelihood.
• Squared error (quadratic) loss: L0-penalized least squares.
• · · · · · ·

Many model selection methods amount to the L0-regularization problem (2) with
different choices of the regularization parameter λ.
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Connections to Other Model Selection Criteria

Let RSSd be the residual sum of squares (RSS) of the best subset with d variables.
Then

• Cp = RSSd/s2 + 2d − n in Mallows (1973) corresponds to λ = 1, where s2 is
the MSE of the full model.

• The adjusted R2 given by

R2
adj = 1−

(n − 1)RSSd
(n − d)SST

also amounts to the L0-regularization problem, where SST is the total sum
of squares.

To see this, note that maximizing R2
adj is equivalent to minimizing

log(RSSd/(n − d)).

By RSSd/(n − d) ≈ σ2 (the error variance), we have

n log
RSSd
n − d

≈
RSSd
σ2 + d + n(log σ2 − 1).

This shows that the adjusted R2 method is approximately equivalent to the
L0-regularization problem (2) with λ = 1/2.
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Other examples include the generalized cross-validation (GCV) given by
RSSd/(1− d/n)2, cross validation (CV) (Stone, 1974), and risk inflation factor
(RIC) (Foster and George, 1994).

Properties of L0-Regularization Methods

A comprehensive theory on risk bounds for model selection using the
L0-regularization method was presented in Barron et al. (1999).

An upper bound on the prediction risk was established. It shows that the tradeoff
between the approximation error (model bias) and the price we pay in searching
over a large family of models.

These results were for the squared error loss. It is challenging to derive results for
other losses such as the Lq-loss ‖β̂ − β0‖q , q > 0, and obtain variable selection
properties.
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Computational challenges of L0-Regularization Methods

Although L0-regularization methods have appealing risk properties, the
computation is infeasible in high-dimensional statistical endeavors due to its
nature of combinatorial optimization (2).

It is infeasible to implement even in moderate dimensions in tens.

The computational difficulty comes from the discontinuity and nonconvexity of
the L0-penalty function λ‖β‖0.

A natural idea is to replace the L0-penalty function with some continuous or
convex penalty function.
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Penalized Empirical Risk Minimization

Consider a continuous or convex relaxation of the L0-regularization method

minβ∈Rd

{
R̂(β) +

d∑
j=1

pλ(|βj |)

}
, (3)

where R̂(β) is the empirical risk function, β = (β1, . . . , βp)T , and pλ(t), t ≥ 0, is a
nonnegative penalty function indexed by the regularization parameter λ ≥ 0 with
pλ(0) = 0.

With an appropriately chosen penalty function, we hope to simultaneously select
important variables and estimate their associated regression coefficients.
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Choice of Penalty Function

The Lq-penalty pλ(t) = λtq for 0 < q ≤ 2 in the bridge regression in Frank and
Friedman (1993), which bridges the best subset selection (L0-regularization) and
ridge regression (L2-regularization), including the L1-penalty as a special case.

The non-negative garrote introduced in Breiman (1995) for shrinkage estimation
and variable selection.

The L1-penalized least squares method was called the Lasso in Tibshirani (1996),
and it is now collectively referred to as L1-penalized empirical risk minimization
method.

There are many other choices of the penalty function to be introduced later; e.g.,
the SCAD in Fan and Li (2001), adaptive lasso in Zou (2006), group lasso in Yuan
and Lin (2006), etc.
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Desirable Properties of Penalty Functions

Fan and Li (2001) advocated penalty functions that give estimators with three
properties:

Sparsity: The resulting estimator automatically sets small estimated
coefficients to zero to accomplish variable selection and reduce model
complexity.
Unbiasedness: The resulting estimator is nearly unbiased, especially when
the true coefficient βj is large, to reduce model bias.
Continuity: The resulting estimator is continuous in data to reduce
instability in model prediction.

It is desirable to have p′
λ(0+) > 0 to ensure the sparsity of the regularized

estimate; see their paper for more insights.
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Summary

The two standard techniques for improving the OLS estimates, subset selection
and ridge regression, both have drawbacks.

• Subset selection provides interpretable models but can be extremely variable
because it is a discrete process. Small changes in the data can result in very
different models being selected.

• Ridge regression is a continuous process that shrinks coefficients and hence is
more stable: however, it does not set any coefficients to 0 and hence does not
give an easily interpretable model.

But, we can do better with appropriately chosen penalty function!
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