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High Dimensional Linear Regression

We consider the following linear regression model

yi = xi1β1 + · · ·+ xipβp + εi , 1 ≤ i ≤ n.

Some notations:
Response: y = (y1, . . . , yn)T ;
Predictors: xj = (x1j , . . . , xnj)T , j = 1, 2, . . . , p;
Design Matrix: Xn×p = (x1, . . . ,xp);
Regression Coefficients: β = (β1, . . . , βp);
True Regression Coefficients: βo = (βo

1 , . . . , β
o
p);

Oracle Set: O = {j : βo
j 6= 0};

Underlying Model Dimensions: d0 = ‖O‖ = #{j : βo
j 6= 0}.
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Centering and Standardization

WLOG, we assume that the response and predictors are centered and the
predictors are standardized as follows:

n∑
i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = n,

for j = 1, 2, . . . , p.

After the centering and standardization, there is no intercept in the model.

Each predictor is standardized to have the same magnitude in L2. So the
corresponding regression coefficients are comparable.

After model fitting, the results can be readily transformed back to the original
scale.
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We consider the penalized least squares (PLS) method:

min
β∈Rp

{
1
2n
‖y−Xβ‖2 +

p∑
j=1

pλ(|βj |)

}
,

where ‖ · ‖ denotes the L2-norm, pλ(·) is a penalty function indexed by the
regularized parameter λ ≥ 0.

Some commonly used penalty functions:

• L0-penalty (subset selection) and L2-penalty (ridge regression);
• Bridge or Lγ penalty, γ > 0. (Frank and Friedman, 1993);
• L1 penalty or Lasso (Tibshirani, 1996);
• SCAD penalty (Fan and Li, 2001);
• MCP penalty (Zhang, 2010);
• Group penalties, bi-level penalties, . . . . . . .
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Plots of Bridge penalties:
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Lasso

Lasso stands for “least absolute shrinkage and selection operator”. There are two
equivalent definitions.

• Minimizing the residual sum of squares subject to the sum of the absolute
value of the coefficients being less than a constant:

β̂ = argmin
{
‖y−Xβ‖2

}
subject to

p∑
j=1

|βj | ≤ t.

• Minimizing the penalized sum of squares:

β̂ = argmin

{
‖y−Xβ‖2 + λ

p∑
j=1

|βj |

}
.

Because of the nature of L1 penalty or constraint, Lasso is able to estimate some
coefficients as exactly 0 and hence performs variable selection.

The Lasso enjoys some of the favorable properties of both subset selection and
ridge regression. It produces interpretable models and exhibits the stability of
ridge regression.
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The motivation for the Lasso came from an interesting proposal of Breiman
(1993). Breiman’s non-negative Garotte minimizes

1
2n

n∑
i=1

(yi −
p∑

j=1

cj β̂
LS
j xij) subject to cj ≥ 0,

p∑
j=1

cj ≤ t,

or
1
2n

n∑
i=1

(yi −
p∑

j=1

cj β̂
LS
j xij) + λ

p∑
j=1

cj , subject to cj ≥ 0.

The Garotte starts with the OLS estimates and shrinks them by non-negative
factors whose sum is constrained.

The Garotte estimate depends on both the sign and the magnitude of OLS. In
contrast, the Lasso avoids the explicit use of the OLS estimates.

Lasso is also closely related to the wavelet soft-thresholding method by Donoho
and Johnstone (1994), forward statewise regression, and boosting methods.
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Solution Path:

For each given λ, we solve the PLS problem. Therefore, for λ ∈ [λmin, λmax], we
have a solution path

{β̂n(λ) : λ ∈ [λmin, λmax]}.

To examine the solution path, we can plot each component of β̂n(λ) versus λ.

In practice, we usually need to determine a value of λ, say, λ∗, and use β̂n(λ∗) as
the final estimator. This model selection step is usually done using some
information criterion or cross validation techniques.

Thus it is important to have fast algorithms for computing the whole solution
path or a grid of λ values.

There are multiple packages in R for computing the Lasso path: ncvreg, glmnet
and lars,. . . .

Note that the solution path can also be indexed by the constraint value t.
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Lasso: Examples

Example 1: Consider the linear regression model

yi =
p∑

j=1

xijβj + εi , 1 ≤ i ≤ n,

where ε ∼ N(0, 1.52), p = 100.

Generate zij ’s and w independently from N(0, 1), let

xij = zij + w, 1 ≤ j ≤ 4, xi5 = zi5 + 2w, xi6 = zi6 + w,

and xij = zij for j ≥ 7.

Let (β1, β2, β3) = (2, 1,−1) and βj = 0 for j ≥ 4.
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To implement the lasso estimation for the above example, we use the R-package
ncvreg. A sample R-code is

Remark: The ncvreg pacakge is built upon the work by Breheny and Huang (2011).
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Example 2 (Prostate Data): The data is from a study by by Stamey et al. (1989)
to examine the association between prostate specific antigen (PSA) and several
clinical measures that are potentially associated with PSA in men who were about
to receive a radical prostatectomy. The variables are as follows:

• lcavol: Log cancer volume
• lweight: Log prostate weight
• age: The man’s age
• lbph: Log of the amount of benign hyperplasia
• svi: Seminal vesicle invasion; 1=Yes, 0=No
• lcp: Log of capsular penetration
• gleason: Gleason score
• pgg45: Percent of Gleason scores 4 or 5
• lpsa: Log PSA
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To implement the lasso estimation for the above example, we use the R-package
ncvreg. A sample R-code is
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To compare Lasso and Ridge, we also add some artificial noise variables to the
model.
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Orthogonal Design in PLS

Insight about the nature of the penalization methods can be gleaned from the
orthogonal design case.

When the design matrix multiplied by n−1/2 is orthonormal, i.e., XT X = nIp×p,
the penalized least squares problem reduces to the minimization of

1
2n
‖y−Xβ̂LSE‖2 +

1
2
‖β̂LSE − β‖2 +

p∑
j=1

pλ(|βj |),

where β̂LSE = n−1XT y is the OLS estimate.

Now the optimization problem is separable in βj ’s. It suffices to consider the
univariate PLS-problem

θ̂(z) = argminθ∈R
{1
2

(z − θ)2 + pλ(|θ|)
}
. (1)
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Characterization of PLS Estimators

Antoniadis and Fan (2001)

Let pλ(·) be a nonnegative, nondecreasing, and differentiable function in (0,∞).
Further, assume that the function −θ − p′λ(θ) is strictly unimodal on (0,∞).
Then we have the following results.
(a). The solution to the minimization problem (1) exists and is unique. It is

antisymmetric: θ̂(−z) = −θ̂(z).
(b). The solution satisfies

θ̂(z) =
{

0 if |z| ≤ p0,

z − sgn(z)p′λ(θ̂(z)) if |z| > p0,

where p0 = minθ≥0{θ + p′λ(θ)}. Moreover, |θ̂(z)| ≤ |z|.

(c). If p′λ(·) is nonincreasing, then for |z| > p0, we have

|z| − p0 ≤ |θ̂(z)| ≤ |z| − p′λ(|z|).

(d). When p′λ(θ) is continuous on (0,∞), the solution θ̂(z) is continuous if
and only if the minimum of |θ|+ p′λ(|θ|) is attained at point zero.

(e). If p′λ(|z|)→ 0 as |z| → ∞, then

θ̂(z) = z − p′λ(|z|) + o(p′λ(|z|)).
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Proof: Denote l(θ) as the function in (1).

(a)-(b). Note that l(θ) tends to infinity as |θ| → ∞. Thus, minimizers do exist.

When z = 0, it is clear that θ̂(z) = 0 is the unique minimizer.

WLOG, assume that z > 0. Then for all θ > 0, l(−θ) > l(θ). Hence θ̂(z) ≥ 0.
Note that for θ > 0,

l′(θ) = θ − z + p′λ(θ).
When z < p0, the function l is strictly increasing on (0,∞) because the derivative
function is positive. Hence θ̂(z) = 0.

Now assume that z > p0. When the function l′(θ) is strictly increasing, there is at
most one zero-crossing, and hence the solution is unique.

If l′(θ) has a valley on (0,∞) (Why?), there are two possible zero-crossings for the
function l′ on (0,∞). The larger one is the minimizer because the derivative
function at that point is increasing. Hence, the solution is unique and satisfies

θ̂(z) = z − p′λ(θ̂(z)) ≤ z. (2)
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Proof(continued):

(c). From the above, it is easy to see that θ̂(z) ≤ z − p′λ(z) when p′λ(·) is
nonincreasing.

Let θ0 be the minimizer of θ + p′λ(θ) over [0,∞). Then, from the preceding
argument, θ̂(z) > θ0 for z > p0. If pλ(·) is nonincreasing, then

p′λ(θ̂(z)) ≤ p′λ(θ0) ≤ θ0 + p′λ(θ0) = p0.

This and (2) prove result (c).

(d). It is clear that continuity of the solution θ̂(z) at the point z = p0 if and only
if the minimum of the function |θ|+ p′λ(|θ|) is attained at 0. The continuity at
other locations follow directly from the monotonicity and continuity of the
function θ + p′λ(θ) in the interval (0,∞).

(e). This follows directly from (2). § If pλ(z) is twice differentiable for large z
values, and p′′λ(|z|)→ 0 as |z| → ∞, then from (2)

θ̂(z) = z − p′λ(θ̂(z)) = z − p′λ(z)− (θ̂(z)− z)p′′λ(z̃),

where z̃ is between z and θ̂(z). Since z →∞ implies θ̂(z)→∞, so the above equation
p′′λ(z̃)→ 0 as z →∞, this in turn leads to |θ̂(z)− z| ≤ c|p′λ(z)| for some constant.
Therefore,

|θ̂(z)− z + p′λ(z)| = |θ̂(z)− z| · |p′′λ(z̃)| ≤ c|p′λ(z)| · |p′′λ(z̃)| = o(p′λ(z)).
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The above theorem implies that the PLS estimator θ̂(z) possesses the properties:
Sparsity if mint≥0{t + p′λ(t)} > 0;
Approximate unbiasedness if p′λ(t)→ 0 for large t;
Continuity if and only if argmint≥0{t + p′λ(t)} = 0.

In general for penalty functions, the singularity at the origin (i.e. p′λ(0+) > 0) is
needed for generating sparsity in variable selection and the concavity is needed to
reduce the bias.

These conditions are applicable for general PLS problems and more.

Homework: Prove Antoniadis and Fan (2001)’s theorem for z < 0.
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Lasso: Orthogonal Design

Under orthogonal design, i.e., XT X = nI , Lasso estimation can be greatly
simplified as discussed above. The problem becomes solving

β̂j = argminβj

{1
2

(β̂LSE
j − βj)2 + λ|βj |

}
.

The Lasso estimator is given by

β̂j = S(β̂LSE
j ;λ),

where S(·;λ) is the soft-thresholding operator

S(z;λ) = sgn(z)(|z| − λ)+ =

{
z − λ, if z > λ,

0 if |z| ≤ λ,
z + λ, if z < −λ,

Homework: Verify the expression of β̂j based on Antoniadis and Fan (2001)’s
theorem.
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Hard Thresholding

The solution to

argminθ
{1
2

(z − θ)2 + λ2 − (|θ| − λ)2I (|θ| < λ)
}

is given by θ̂ = H(z;λ), where

H(z;λ) = zI (|z| > λ) =
{

z, if |z| > λ,
0, if |z| ≤ λ,

is called the hard thresholding operator.

The proof of the above minimizer is based upon Antoniadis and Fan (2001)’s
theorem.

This corresponding to the best subset selection. Note that the best subset
selection of size k reduces to choosing the k largest coefficients in absolute value
and setting the rest to 0.
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Ridge/Non-negative Garotte Estimators

Under orthogonal design, the ridge regression estimator is given by
1

1 + λ
β̂LSE

j .

Under orthogonal design, the non-negative garotte solution is given by

β̂NG
j =

(
1−

λ

(β̂LSE
j )2

)
+

β̂LSE
j .

For: Note that the target function in the non-negative garotte procedure can be
written as

1
2n
‖y−Xdiag(β̂)c‖2

2 + λ‖c‖.

Let c∗j = cj β̂LSE
j . Then the target function becomes

1
2n
‖y−Xc∗‖2

2 + λ

p∑
j=1

|(β̂LSE
j )−1c∗j |

which is equivalent to 2−1‖β̂LSE − c∗‖2
2 + λ

∑p
j=1 |(β̂

LSE
j )−1c∗j |

Weixing Song STAT 905 October 23, 2014 26/54



Therefore, minimizing the above target function is amount to find the minimizer of
1
2

(β̂LSE
j − c∗j )2 + λ|(β̂LSE

j )−1| · |c∗j |.

Hence the solution is
c∗j = S(β̂LSE

j ;λ|β̂LSE
j |−1).

Transformation back to cj gives β̂NG
j .
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Comparison of Four Estimators
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The Geometry of Lasso

The RSS term ‖y−Xβ‖ equals the following quadratic function plus a constant

(β − β̂LSE)T XT X(β − β̂LSE).

The contour of the above function is elliptical. These ellipsoids are centered at the
LSE.

For Lasso, the L1-constraint region is a diamond; for ridge, the L2-constraint
region is a disk.
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Another way of comparing Lasso and ridge is from a Bayesian perspective.

In ridge, the prior of β is normal distribution; in Lasso, the prior of β is Laplace
distribution.
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How to obtain Lasso solution for the general case?

Lasso is a convex programming problem. Several algorithms have been proposed
for computing L1-penalized estimates.

• Coordinate descent. See Fu (1998), Friedman et al. (2007).
• Convex optimization algorithms. See Osborne et al. (2000a, b).
• Least angle regression (LARs). See Efron et al. (2004).
• Others . . . . . .

Here we first focus on the coordinate descent algorithm, which is simple, stable,
and efficient for a variety of high-dimensional models.

Coordinate descent algorithms optimize a target function with respect to a single
parameter at a time, iteratively cycling through all parameters until convergence
is reached.

They are ideal for problems that have a simple closed form solution in a single
dimension but lack one in higher dimensions.
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Coordinate Descent Algorithm: Derivation

Given current values for the regression coefficients βk = β̃k , k 6= j. Define

Lj(βj ;λ) =
1
2n

n∑
i=1

(
yi −

∑
k 6=j

xik β̃k − xijβj

)2

+ λ|βj |.

Denote

ỹij =
∑
k 6=j

xik β̃k , r̃ij = yi − ỹij , z̃j =
1
n

n∑
i=1

xij r̃ij .

r̃ij are called the partial residuals with respect to the j-th covariate.

Some algebra shows that

Lj(βj ;λ) =
1
2

(βj − z̃j)2 + λ|βj |+
1
2n

n∑
i=1

r̃2
ij +

1
2

z̃2
j .

Let β̃j denote the minimizer of Lj(βj ;λ). We have

β̃j = S(Z̃j ;λ) = sgn(z̃j)(|z̃j | − λ)+,

where S(·;λ) is the soft-thresholding operator.
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Coordinate Descent Algorithm

For any fixed λ,

1. Start with an initial value for β = β(0);

2. In the s + 1-th iteration,
(1). Let j = 1;
(2). Calculate

z̃j = n−1
n∑

i=1

xijri + β̃
(s)
j ,

where ri = yi − ỹi = yi −
∑p

j=1 xij β̃
(s)
j is the current residual.

(3). Update β̃(s+1)
j using S(z̃j ;λ). If j = p, then exit step 2.

(4). Update ri using ri − (β̃(s+1)
j − β̃(s)

j )xij for all i.
(5). Let j ⇐ j + 1, repeat (2)-(4).

3. Repeat step 2 for s + 1 until convergence.

NOTE: The above algorithm is designed for the cases in which the predictors are standardized to

have L2-norm n.
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The coordinate descent algorithm can be used repeatedly compute β̂(λ) on a grid
of λ values. Let λmax be the smallest value for which all coefficients are 0, and
λmin be the minimum of λ.

We can use λmax = maxj |(xT
j xj)−1xT

j y| (Consider the orthogonal design case). If
the design matrix is full rank, λmin can be 0; otherwise, we use λmin = ελmax for
some small ε, e.g., ε = 10−4.

Let λ0 > λ1 > · · · > λk be a grid of decreasing λ-values, where λ0 = λmax, and
λk = λmin. Start at λ0 for which β̂ has the solution 0 or close to 0, and proceed
along the grid using the value of β̂ at the previous point of λ in the grid as the
initial values for the current point. This is called warm start.

Homework:
(a). Verify the updating steps in the coordinate descent algorithm for Lasso.
(b). Write an R-program to implement the coordinate descent algorithm for
computing the Lasso solution path.
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Penalty Parameter Selection: CV
• Divide the data into V roughly equal part (5 to 10);
• For each v = 1, 2, . . . ,V , fit the model with parameter λ to the other V − 1

parts. Denote the resulting estimates by β̂
(−v);

• Compute the prediction error (PE) in predicting the v-th part:

PEv(λ) =
∑

i∈v-th part
(yi − xT

i β̂
(−v)(λ))2;

• Compute the overall cross-validation error

CV (λ) =
1
V

V∑
v=1

PEv(λ);

• Carry out the above steps for many values of λ and choose the value of λ
that minimizes CV (λ).
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Penalty Parameter Selection: AIC and GCV

An AIC type criterion for choosing λ is

AIC(λ) = log
{
‖y−Xβ̂(λ)‖2/n

}
+ 2df (λ)/n,

where for the Lasso estimator, df (λ) = # of nonzero coefficients in the model
fitted with λ.

A Generalized Cross Validation (GCV) criterion is defined as

GCV (λ) =
n‖y−Xβ̂(λ)‖2

(n − df (λ))2 .

It can be seen that these two criteria are close to each other when df (λ) is
relatively small compared to n.

Weixing Song STAT 905 October 23, 2014 38/54



Penalty Parameter Selection: BIC

The GCV and AIC are reasonable criteria for tuning. However, they tend to select
more variables than the true model contains.

Another criterion that is more aggressive in seeking a sparse model is the
Bayesian information criterion (BIC):

BIC(λ) = log
{
‖y−Xβ̂(λ)‖2/n

}
+ 2 log(n)df (λ)/n.

The tuning parameter λ is selected as the minimizer of AIC(λ), GIC(λ) or
BIC(λ).
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Automatic model-building algorithms are notoriously familiar in the linear model
literature: Forward Selection, Backward Elimination, Best Subset Selection and
many others are used to produce good linear models for predicting a response y
on a basis of some measured covariates x1,x2, . . . ,xp.

The Lasso and Forward Stagewise regression will be discussed in this section.

They are both motivated by a unified approach called Least Angle Regression
(LARs). LARs provides an unified explanation, fast implementation, and fast way
to choose tuning parameter for Lasso and Forward Stagewise regression.
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Forward Stepwise Selection

Given a collection of possible predictors, we select the one having the largest
absolute correlation with the response y, say xj1 , and perform linear regression of
y on xj1 . This leaves a residual vector orthogonal to xj1 , now considered to be the
response.

Regressing other predictors to xj1 leads to p − 1 residuals, now considered as new
predictors.

Repeat the selection process by selecting the one from new predictors having the
largest absolute correlation with the new response.

After k steps this results in a set of xj1 , . . . , xjk that are then used in the usual way
to construct a k-parameter linear model.

Forward Selection is an aggressive fitting technique that can be overly greedy,
perhaps eliminating at the second step useful predictors that happen to be
correlated with xj1 .
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Forward Stagewise Selection

Forward Stagewise is a much more cautious version of Forward Selection, which
may take many tiny steps as it moves toward a final model.

We assume that the covariates have been standardized to have mean 0 and unit
length and that the response has mean 0.

Forward Stagewise Selection

(1). It begins with µ̂ = Xβ̂ = 0 and builds up the regression
function in successive small steps.

(2). If µ̂ is the current Stagewise estimate, let c(µ̂) be the vector of
current correlations ĉ = c(µ̂) = XT (y− µ̂), so that ĉj is proportional
to the correlation between covariate xj and the current residual
vector.
(3). The next step of is taken in the direction of the greatest current
correlation,

ĵ = argmax|ĉj |
and update µ̂ by

µ̂⇐ µ̂+ ε · sgn(ĉĵ)xĵ ,

with ε a small constant.
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Small is important here: the big choice ε = |ĉĵ | leads to the classic Forward
Selection technique, which can be overly greedy, impulsively eliminating covarites
which are correlated to xĵ .

How does these related to Lasso?

Example (Diabetes Study): 442 diabetes patients were measured on 10
baseline variables (age, sex, body mass index, average blood pressure, and six
blood serum measurements), as well as the response of interest, a quantitative
measure of disease progression one year after baseline. A prediction model was
desired for the response variables.

The X442×10 matrix has been standardized to have unit L2-norm in each column
and zero mean.

We use Lasso and Forward Stagewise regression to fit the model.
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The two plots are nearly identical, but differ slightly for larger t as shown in the
track of covariate 8.

Coincidence? or a general fact ...
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Question: Are Lasso and infinitesimal forward stagewise identical?

Answer: With orthogonal design, yes; otherwise, similar.

Question: Why?

Answer: LARs provides answers to these questions, and an efficient way to
compute the complete Lasso sequence of solutions.
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LARs Algorithm: General Idea

Least Angle Regression is a stylized version of the stagewise procedure. Only p
steps are required for the full set of solutions.

The LARs procedure works roughly as follows:

(1). Standardize the predictors to have mean 0 and unit L2-norm, the
response to have mean 0.
(2). As with classic Forward Selection, start with all coefficients equal to
zero and find the predictor most correlated with y, say xj1 .
(3). Take the largest step possible in the direction of this predictor until some
other predictor, say xj2 , has as much correlation with the current residual.
(4). At this point, LARs parts company with Forward Selection. Instead of
continuing along xj1 , LARs proceeds in a direction equiangular between the
two predictors until a third variable xj3 earns its way into the most
“correlated” set.
(5). LARs then proceeds equiangularly between xj1 , xj2 , xj3 , i.e., along the
“least angle direction”, until a fourth variable enters.
(6). Continue in this way until all p predictors have been entered.
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LARs Algorithm: Two-Predictor Case

In a two-predictor case, the current correlations depend only on the projection
into the linear space spanned by x1 and x2.

The algorithm begins at µ0 = 0, then augments µ̂0 in the direction of x1 to
µ̂1 = µ̂0 + γ̂1x1.

• Stagewise would choose γ1 equal to some small value ε, and then repeat the
process many times.

• Classic Forward Selection would take γ1 large enough to make µ̂1 equal the
projection of y into L(x1).

• LARs uses an intermediate value of γ1, the value that makes the residual
equally correlated with x1 and x2.

The next LARs estimate is µ̂2 = µ̂1 + γ2u2, with γ2 chosen to make µ̂2 = Xβ̂LSE,
where u2 is the unit bisector of x1 and x2.

With p > 2 covariates, γ2 would be smaller, leading to another change of direction.
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LARs in Action:

Least Angle Regreesion

(1). We begin at µ̂0 = 0.

(2). Compute ĉ = XT (y− µ̂0), and Ĉ = maxj |ĉj |. Find out

A = {j : |ĉj | = Ĉ}, sj = sgn(ĉj), j = 1, 2, . . . , p.

(3). Compute

XA = (· · · , sjxj , · · · ), GA = XT
AXA, AA = (1T

AG
−1
A 1A)−1/2

and
wA = AAG−1

A 1A, uA = XAwA, a = XT uA.

(4). Update µ̂0 with
µ̂ = µ̂0 + γ̂uA,

where

γ̂ = min+
j∈AC

{
Ĉ − ĉj

AA − aj
,

Ĉ + ĉj

AA + aj

}
,

and min+ indicates that the minimum is taken over only positive
components.
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Relationship between LARs, Lasso and Forward Stagewise Regression

Lasso and forward stagewise can be thought of as restricted versions of LARs.

For Lasso:

Start with LAR. If a coefficient crosses zero, stop. Drop that predictor, recompute
the best direction and continue. This gives the Lasso path.

For forward stagewise:

Start with LAR. Compute best (equal angular) direction at each stage. If
direction for any predictor j doesn’t agree in sign with corr(r , xj), project direction
into the “positive cone” and use the projected direction instead.

In other words, forward stagewise always moves each predictor in the direction of
corr(r , xj).

The incremental forward stagewise procedure approximates these steps, one
predictor at a time. As step size ε→ 0, we can show that it coincides with this
modified version of LARs.
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