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Model:

yi = xi1β1 + · · ·+ xipβp + εi , 1 ≤ i ≤ n

Notations:

• Response: y = (y1, . . . , yn)T .
• Predictors: xj = (x1j , . . . , xnj)T , j = 1, 2, . . . , p.
• Design Matrix: Xn×p = (x1, . . . ,xp).
• Residuals: ε = (ε1, . . . , εn)T .
• Regression Coefficients: β = (β1, . . . , βp)T .
• True Regression Coefficients: βo = (βo

1 , . . . , β
o
p)T .

• Oracle Set: O = {j : βo
j 6= 0}.

• Underlying Model Dimension: d0 = ‖O‖ = #{j : βo
j 6= 0}.

Weixing Song STAT 905 November 7, 2014 4/53



Centering and Standardization

WLOG, we assume that the response and predictors are centered and the
predictors are standardized as follows

n∑
i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = n, 1 ≤ j ≤ p.

Then there is no intercept in the model.

Each predictor is standardized to have the same magnitude in L2. So the
corresponding regression coefficients are “comparable”.

After model fitting, the results can be readily transformed back to the original
scale.
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Recall that
β̂Lasso = argminβ

{ 1
2n
‖y−Xβ‖2 + λ‖β‖1

}
,

where ‖β‖1 =
∑p

j=1 |βj | is the L1-norm of β.

What theoretical properties does the Lasso estimator have?

• Estimation consistency and asymptotic distribution.
• Prediction properties.
• Selection consistency.
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More General Questions

There are some fundamental theoretical questions in the area of high-dimensional
problems:

• What is the limit of dimensionality that the regularization methods can
handle?

• What is the role of penalty function?
• What is the optimality of the regularized estimator?

Optimality of the regularization methods (Bickel et al,. 2006; Candès, 2006):

• Consistency.
• For a function class F , whether the estimate f̂ attains the minimax risk

inf
f̂
max
f∈F

MSE(f , f̂ ).

• For a function class F with a prior π, whether the estimator f̂ achieves the
minimum average MSE or Bayes risk EπMSE(f , f̂ ).

• Can the estimator match with the “oracle” choice?
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Oracle Properties

One important concept is the so called oracle properties.

Ideally, we want our model to exactly select the set of true covariates as n →∞.
This property is called consistency and it is the first requirement of an oracle
procedure.

Definition (Oracle Procedure)

Denote β̂(δ) the coefficient estimator for fitting procedure δ. We call δ an
oracle procedure if β̂(δ) (asymptotically) has the following properties:

• Identifies right subset model (consistency): {j : β̂j(δ) 6= 0} = O;
• Has optimal estimation rate:

√
n(β̂O − βo

O) L−→ N(0,Σ0),

where Σ0 is the covariance matrix knowing the true subset model.

In general, we want to establish some “oracle inequalities”, which relates the
performance of a real estimator with that of an ideal estimator which relies on
perfect information supplied by an oracle, and which is not available in practice.
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Unveiling the Mystery of “Oracle Inequality”

The importance of this section relies upon the fact that
• it shows the strength of shrinkage estimation.
• it introduces the idea of an oracle inequality.

Consider the problem of estimating a (possibly infinite) vector θ ∈ Rp from
observations y ∼ N(θ, I ), and focus on the statistical underpinnings of this
problem.

What is the maximum likelihood estimator of θ?

What is the MSE of the MLE?

We would like to estimate θ ∈ Rp from observations y ∼ N(θ, I ), and use
MSE(θ̂, θ) = E‖θ̂ − θ‖2 to measure the performance.

The MLE is given by y and MSE(θ̂, θ) = p.
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Everybody would agree that the MLE is a good estimator. After all, what other
estimators could we use in the absence of any additional information about θ?

The surprising discovery of James and Stein (1961) is that when p > 2, the MLE
is not admissible!

That is, there exist estimators which are more accurate than the MLE (or better
than the sample mean in the case where one gets independent copies of y).

The James-Stein Estimator is defined as

θ̂
JS =

(
1−

p − 2
‖y‖2

)
y,

which shrinks the data y towards the origin.

MSE Comparison between MLE and James-Stein Estimator

MSE(θ̂JS
, θ) < MSE(θ̂MLE

, θ), for all θ ∈ Rp, p > 2. (1)
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To show the above result, we need the following Stein’s Lemma.

Stein’s Lemma

If Y ∼ N(θ, 1) and h(y) is any differentiable function such that Eh′(Y ) <
∞. Then

E[h(Y )(Y − θ)] = Eh′(Y ).

More general, we have

Stein’s Unbiased Risk Estimation

If y ∼ N(θ, 1) and µ̂ = y + g(y), where g : Rp → Rp is a differentiable
function. Then under mild integrability assumptions:

E‖y + g(y)− θ‖2 = E[p + 2∇g(y) + ‖g(y)‖2],

where ∇g(y) is the divergence of g, ∇g(y) =
∑p

i=1 ∂gi(y)/∂yi

Weixing Song STAT 905 November 7, 2014 12/53



Proof of (1): We shall show a more general result. For any fixed µ ∈ Rp, let

δ(y) = µ+
(
1−

p − 2
S2

)
(y− µ), S2 = ‖y− µ‖2 =

p∑
j=1

(Yj − µj)2.

Then
E‖δ(y)− θ‖2 = E

∥∥∥y− p − 2
S2 (y− µ)− θ

∥∥∥2
.

Let
g(y) = −

p − 2
S2 (y− µ), then ∇g(y) = −

(p − 2)2

S2 .

So, from the result of Stein’s unbiased risk estimation,

E‖δ(y)− θ‖2 = p − (p − 2)2E
( 1
S2

)
.

Note that when p ≥ 3, the expectation is finite, so

E‖δ(y)− θ‖2 = p − (p − 2)2E
( 1
S2

)
< p = E‖y− θ‖2.

Remark: See Bock, Judge and Yancey (1984) for the finiteness of E(1/S2).
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A more general definition of James-Stein estimator is

θ̂
JS = µ+

(
1−

p − 2
‖y− µ‖2

)
(y− µ),

which shrink y towards an arbitrary µ.

Note that for small value of ‖y− µ‖, the shrinkage factor can be negative. A
nonlinear shrinkage version is defined as

θ̂
JS = µ+

(
1−

p − 2
‖y− µ‖2

)
+

(y− µ).

The above estimation problem can be stated more generally, i.e., we may assume
x1,x2, . . . are independent Gaussian observation with mean θ such that
y = x̄ ∼ N(θ, I ).

The approach can also be extended to a more general known covariate matrix Σ.
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Implications of The James-Stein Estimator

The performance of the shrinkage estimator is superior to that of the sample mean
for all values of the parameter θ.

This is surprising, because y may measure seemingly unrelated quantities such as
the taste of clams and the age of the universe (Le Cam, 2000).

It is therefore surprising that by mixing information about completely
disconnected problems, one can obtain an estimator with a total MSE that is
smaller than that one would obtain by considering each problem separately.

This strange phenomenon is difficult to comprehend and has had an enormous
influence on the theory of statistics.

James-Stein estimator can be motivated and interpreted from an empirical Bayes
approach (Efron and Morris, 1975).

We will not attempt to dive into this literature and, instead, merely note that
nonlinear shrinkage improves performance.
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Ideal Linear Shrinkage Estimator and Oracle Inequalities

Unfortunately, James-Stein estimator is still not admissible.

It is time to revisit the main issue discussed so far: how much should we smooth
or, rather, how much should we shrink?

To estimate θ ∈ Rp from observation y ∼ N(θ, I ), consider the family of estimators

θ̂
c = cy

where c is a scalar. The MSE of θ̂c is

MSE(θ̂c
, θ) = (1− c)2‖θ‖2 + c2p.

By differentiation, the ideal c-value to minimize MSE(θ̂c
, θ) is

c∗ =
‖θ‖2

‖θ‖2 + p
.

Accordingly,

MSE(θ̂c∗
, θ) =

p‖θ‖2

‖θ‖2 + p
.

Weixing Song STAT 905 November 7, 2014 16/53



The estimator θ̂c∗ is ideal because we would of course not know which estimator c
is the best.

To achieve the ideal MSE, one would need an oracle that would tell us which
shrinkage factor to choose.

The difference from the James-Stein estimator is that the shrinkage factor in
James-Stein estimator is estimated from data, while in the ideal scenario, the ideal
shrinkage factor depends on ‖θ‖.

Obviously, infc MSE(θ̂c∗
, θ) ≤ MSE(θ̂JS

, θ).

But a more interesting fact is that there is an inequality in the other direction.

An Oracle Inequality between θ̂JS and θ̂c∗

For θ̂JS = (1− (p − 2)/‖y‖2)y and θ̂c = cy, we have

MSE(θ̂JS
, θ) ≤ 4 + inf

c
MSE(θ̂c

, θ).
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Proof: It is known that

E‖θ̂JS − θ‖2 = p − (p − 2)2E
( 1
‖y‖2

)
≤ p −

(p − 2)2

E‖y‖2 ,

and
E‖y‖2 = ‖θ‖2 + p.

Therefore,

E‖θ̂JS − θ‖2 ≤ p −
(p − 2)2

‖θ‖2 + p
=
‖θ‖2p
‖θ‖2 + p

+
4(p − 1)
‖θ‖2 + p

.

This completes the proof by noting that the last term is less than 4. �

The inequalities say that the James-Stein estimator is almost as good as the ideal
estimator in a mean-squared error sense.

When p is large, the additive factors are small compared to the MSE of the MLE,
which is p.
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The oracle inequality relates the performance of a real estimator with that of an
ideal estimator which relies on perfect information supplied by an oracle, and
which is not available in practice.

Oracle inequality is a powerful concept that is used extensively in high
dimensional analysis.

The linear estimators can be highly ineffective. The James-Stein estimator, which
is essentially a linear estimator, albeit with a nonlinear data-dependent shrinkage
factor, can also be very ineffective.

The thresholding rules which are true nonlinear estimation procedures may
perform well in much more complicated settings.

A foundational result in modern estimation is that correctly tuned thresholding
rules nearly achieve the risk of ideal projections. For details, see Donoho and
Johnstone (1994).
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Some Inequalities

We will use some matrix inequalities in the theoretical derivation. Here are two
important ones.

• Cauchy-Schwarz Inequality

Suppose x ∈ Rp,y ∈ Rp, A is a p × p positive definite matrix. Then

xTy ≤ ‖x‖ · ‖y‖, xTy ≤
√

xTAy · xTA−1y.

• Maximization Lemma

Suppose x ∈ Rp and A is p × p positive matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λp > 0 and eigenvectors e1, e2, . . . , ep. Then

λpxTx ≤ xTAx ≤ λ1xTx,

max
x 6=0

xTAx
xTx

= λ1 which is attained at x = e1,

min
x6=0

xTAx
xTx

= λp which is attained at x = ep.
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p Fixed: An MSE Inequality

Let cmin be the smallest eigenvalue of Σ = XTX/n.

In the following, we shall use β̂n to denote the Lasso estimator of β.

Theorem 1

Suppose that cmin > 0 and that ε1, . . . , εn are independent random vari-
ables with Eεi = 0 and Eε2

i = σ2. Then

E‖β̂n − β0‖2 ≤
8σ2p
ncmin

+
16λ2p
c2

min
.
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Proof: Let λn = nλ. By the definition of β̂n ,

‖y−Xβ̂n‖2 + 2λn‖β̂n‖1 ≤ ‖y−Xβo‖2 + 2λn‖βo‖1.

Thus
‖X(β̂n − βo)‖2 − 2εTX(β̂n − βo) ≤ 2λn‖β̂n − βo‖1. (2)

Denote ηn = X(β̂ − βo). Then

‖ηn‖2 + 2εTηn ≤ 2λn
√p‖β̂n − βo‖.

Let ε∗ = X(XTX)−1XTε. By Cauchy-Schwarz inequality,

2|εTηn | ≤ 2‖ε∗‖ · ‖ηn‖ ≤ 2‖ε∗‖2 +
1
2
‖ηn‖2.

It follows that ‖ηn‖2 ≤ 4‖ε∗‖2 + 4λn
√p‖β̂n − βo‖. Furthermore, we have

ncmin‖β̂n − βo‖2 ≤ 4‖ε∗‖2 +
(4λn

√p)2

2ncmin
+

1
2
ncmin‖β̂n − βo‖2.

Simple arrangement leads to

‖β̂n − βo‖2 ≤
8‖ε∗‖2

ncmin
+

16λ2
np

n2c2
min

.

The result follows by noting that λn = nλ.
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The keys in the proof of Theorem 1:

• Start with the so called “Basic inequality (2)” easily derived from the Lasso
objective function.

• Try to bound the stochastic part of the problem.
• Use elementary inequalities to get everything to the L2 world.

Theorem 1 implies that if λ = o(1), then β̂n is consistent.

Note that the consistency in estimation is not the same as consistency in variable
selection.

The latter apparently may require stronger assumption.
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Fixed p: Asymptotic Distribution

Let β = βo + n−1/2t, and define

Ln(t) =
1
2n
‖y−Xβ‖2 + λ‖β‖1 =

1
2n
‖y−X(βo + n−1/2t)‖2 + λ‖βo + n−1/2t‖1.

Let
t̂n = argmintVn(t)

where

Vn(t) = n[Ln(t)− Ln(0)]

=
1
2
[
‖ε− n−1/2Xt‖2 − ‖ε‖2

]
+ nλ(‖βo + n−1/2t‖1 − ‖βo‖1).

Then
√
n(β̂n − βo) = t̂n .

The idea is to show that Vn(t) =⇒ V (t) weakly. By the argmin continuous
mapping theorem of Kim and Pollard (1990), we have

t̂n =⇒d argmintV (t).
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We shall assume XTX/n → Σ and
√
nλ→ λ0 as n →∞.

First, we have
1
2
(
‖ε− n−1/2Xt‖2 − ‖ε‖2

)
=⇒ −σtT Σ1/2z +

1
2
tT Σt,

where z ∼ N(0, Ip).

Second, we have

nλ(‖βo + n−1/2t‖1 − ‖βo‖1)→ λ0

p∑
j=1

[tjsgn(β0j)I (β0j 6= 0) + |tj |I (β0j = 0)] .

Therefore, √
n(β̂n − βo) =⇒ argmintV (t),

where

V (t) = −σtT Σ1/2z +
1
2
tT Σt + λ0

p∑
j=1

[tjsgn(β0j)I (β0j 6= 0) + |tj |I (β0j = 0)] .

Weixing Song STAT 905 November 7, 2014 26/53



The keys in developing the asymptotic distribution:

• Transform the objective function so that it is optimized at the point of our
target, i.e.,

√
n(β̂n − βo).

• Rescale or adjust the objective function and find its limit.
• Invoke the Argmax/Argmin continuous mapping theorem, which roughly

says that: under certain conditions, the convergence of the objective function
implies the convergence of its optimizer.

When λ0 = 0, i.e.,
√
nλ→ 0, then

V (t) = −σtT Σ1/2z +
1
2
tT Σt.

It is minimized at σΣ−1/2z ∼ N(0, σ2Σ−1), which is the limit distribution of the
LSE. However, this result is uninteresting. For such λ, the Lasso essentially
behaves like the LS estimator, which does not do variable selection.

The right order of growth for λ is
√
nλ→ λ0 > 0.

The asymptotic distribution here is complicated and it is not clear how to make
use of it.
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An interesting question is how to make statistical inference based on the Lasso
estimator, e.g., constructing confidence intervals and conducting statistical tests
etc..

It is tempting to bootstrap the Lasso estimator for statistical inference. However,
it appears that the bootstrap does not work here: the bootstrap is not consistent
for Lasso.

As recently shown by Chatterjee and Lahiri (2011), a modified bootstrap method
provides valid approximation to the distribution of a Lasso estimator; moreover,
they have shown that the standard residual bootstrap can consistently estimate
the distribution of an adaptive Lasso estimator due to its oracle properties.

Note that we have used a very important tool called Argmax/Argmin continuous
mapping theorem. See more details in Knight and Fu (1998).
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p� n Case: Theorem 2

The following theorem provides a prediction bound for Lasso in terms of L1
sparsity.

Theorem 2

In the event
{
‖XTε‖∞ ≤ nλ

}
=
{
max1≤j≤p

∣∣∑n
i=1 xijεi

∣∣ ≤ nλ
}
, we

have ‖X(β̂n − βo)‖2 ≤ 4nλ‖βo‖1.

Proof: By the definition of β̂n ,

1
2n
‖y−Xβ̂n‖

2 + λ‖β̂n‖1 ≤
1
2n
‖y−Xβo‖2 + λ‖βo‖1.

This implies

1
2n
‖X(β̂n − β

o)‖2 ≤
1
n

(β̂n − β
o)T XT

ε+ λ(‖βo‖1 − ‖β̂n‖1).

Thus, in the event
{
‖XTε‖∞ ≤ nλ

}
,

1
2n
‖X(β̂n − β

o)‖2 ≤ λ(‖β̂n‖1 + ‖βo‖1) + λ(‖βo‖1 − ‖β̂n‖1) = 2λ‖βo‖1.

The inequality follows.
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A Guideline of Choosing Tuning Sequences

Suppose ε1, ε2, . . . , εn are i.i.d. as N(0, σ2). Let τj =
∑n

i=1 xijεi/(
√
nσ), we have

τj ∼ N(0, 1). Then

P

(
max

1≤j≤p

∣∣∣∣∣
n∑

i=1

xijεi

∣∣∣∣∣ ≥ nλ

)
= P

(
max

1≤j≤p
|τj | ≥ λ

√
n/σ
)

≤
p∑

j=1

P
(
|τj | ≥ λ

√
n/σ
)
≤ 2p(1− Φ(λ

√
n/σ)).

Since 1− Φ(x) ≤ (
√
2πx)−1 exp(−x2/2), we have

P

(
max

1≤j≤p

∣∣∣∣∣
n∑

i=1

xijεi

∣∣∣∣∣ ≥ nλ

)
≤

2pσ
√
2nπλ

exp
(
−
nλ2

2σ2

)
.

When λ = a0σ
√

log(p)/n with a0 ≥
√
2,

P

(
max

1≤j≤p

∣∣∣∣∣
n∑

i=1

xijεi

∣∣∣∣∣ ≥ nλ

)
≤

2p1−a2
0/2

a0
√

2π log(p)
→ 0, as p→∞.
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Corollary to Theorem 2

Suppose ε1, ε2, . . . , εn are independent and identically distributed as
N(0, σ2). Let λ = a0σ

√
log(p)/n with a0 ≥

√
2. Then with probabil-

ity at least

1−
2p1−a2

0/2

a0
√

2π log(p)
,

we have
‖X(β̂n − βo)‖ ≤ 4nλ‖βo‖1.

In particular, when a0 =
√
2, then with probability at least 1− 1/

√
π log p, the

above inequality holds.

The value λ = σ
√

2 log(p)/n is often called the universal threshold value.
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Implications of Theorem 2:

• “Sparsity” is a general concept, and it can be measured in various ways.
• Theorem 2 is about L1 sparsity.

• The tuning parameter is of order
√

log p/n, to ensure that the probability
with which the statement holds converges to 1.

• Theorem 2 implies that ‖X(β̂n − βo)‖2/n → 0 in probability requires a
sparsity assumption of the from

‖βo‖1 = o
(√

n
log p

)
.

We will introduce a more refined oracle inequality.
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p� n Case: A Basic Lemma

In the following, we will use β̂ to denote the Lasso solution.

Basic Lemma

On the set {‖XTε‖∞ ≤ λ/2},

1
2n
‖X(β̂ − βo)‖2 +

λ

2
‖β̂ − βo‖1 ≤ 2λ‖β̂O − βo

O‖1,

In particular,
‖β̂ − βo‖1 ≤ 4‖β̂O − βo

O‖1.

Proof: By the definition of the Lasso,
1
2n
‖y−Xβ̂‖2 + λ‖β̂‖1 ≤

1
2n
‖y−Xβo‖2 + λ‖βo‖1.

This implies
1
2n
‖X(β̂ − βo)‖2 ≤

1
n

(β̂ − βo)TXTε+ λ(‖βo‖1 − ‖β̂‖1).
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Thus in the event {‖XTε‖∞ ≤ λ/2},

1
2n
‖X(β̂ − βo)‖2 ≤

λ

2
‖β̂ − βo‖1 + λ(‖βo‖1 − ‖β̂‖1),

and
1
2n
‖X(β̂ − βo)‖2 +

λ

2
‖β̂ − βo‖1 ≤ λ‖β̂ − βo‖1 + λ(‖βo‖1 − ‖β̂‖1).

Note that for all j /∈ O = ‖βo
O‖0 = ‖βo‖0,

|β̂j − βo
j |+ |βo

j | − |β̂j | = 0.

So we have
1
2n
‖X(β̂ − βo)‖2 +

λ

2
‖β̂ − βo‖1 ≤ 2λ‖β̂O − βo

O‖1.

In particular, this implies the desired result.
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Restricted Eigenvalue Condition

Denote
B = {b ∈ Rp : ‖b‖1 ≤ 4‖bO‖1}.

The design matrix X satisfies the restricted eigenvalue (RE) condition if there
exists a constant c∗ > 0, such that, on the set B,

min
‖b‖6=0,b∈B

bTXTXb/n
‖b‖2 ≥ c∗,

where ‖ · ‖ is the L2-norm.

Now we introduce an oracle inequality for Lasso in terms of L0 sparsity.

Theorem 3

Suppose the RE condition holds. In the event {‖XTε‖∞/n ≤ λ/2}, we
have

‖β̂ − βo‖2 ≤ 16
λ2

c2
∗
‖βo‖0.
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Proof: By the basic Lemma and the RE condition, on the set
{‖XTε‖∞/n ≤ λ/2},

c∗
2
‖β̂ − βo‖2 ≤

1
2n
‖X(β̂ − βo)‖2 ≤ 2λ‖β̂O − βo

O‖1.

By Cauchy-Schwarz inequality, it follows that
c∗
2
‖β̂ − βo‖2 ≤ 2λ

√
|O|‖β̂ − βo‖.

Using 2ab ≤ 4a2 + b2/4,

c∗
2
‖β̂ − βo‖2 ≤

4λ2|O|
c∗

+
c∗
4
‖β̂ − βo‖2.

This implies the desired result.
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A Remark on Restricted Eigenvalue Assumption

If we relax the RE condition to: There exists a constant c∗ > 0 such that, for any
b ∈ Rp that satisfies ∑

j 6=O

|bj | ≤ 4
√
|O|
√∑

j∈O

b2
j ,

it holds that
1
n
‖Xb‖2 ≥ c∗

∑
j∈O

b2
j .

Then, in the event {‖XTε‖∞/n ≤ λ/2}, we have

1
n
‖X(β̂ − βo)‖2 ≤ 16

λ2

c2
∗
|O|.

This implies

‖β̂O − βo
O‖

2 ≤ 16
λ2

c2
∗
|O|,

and
‖β̂ − βo‖1 ≤ 4

√
|O|‖β̂O − βo

O‖ ≤ 4
√
|O|4

λ

c∗

√
|O| ≤ 16

λ

c∗
|O|.
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Implication of Theorem 3

• Theorem 3 presents us an oracle inequality based on L0 sparsity.

• Note that λ is of order
√

log(p)/n, which means n−1‖X(β̂ − βo)‖2 is of
order log(p)|O|/n.

• It implies that, up to the log p term (and the compatibility constant c2
∗), the

mean squared prediction error is of the same order as of one know a priori
which covariates are relevant and using ordinary LSE based on the true
relevant |O| variables only.

• The log p factor can be viewed as the price we have to pay for not knowing
the oracle set.
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Sign Consistency

For Lasso method, another important question is: under what conditions, the
Lasso estimator β̂ is selection consistent, in the sense that, with high probability,
if βo

j = 0, then β̂j = 0, and if βo
j 6= 0, then β̂j 6= 0.

Actually, we want to ask for a stronger result, that is, under what conditions, β̂ is
sign consistent.

What is Sign Consistency?

For any vectors x and y, we say x =s y if sgn(x) = sgn(y) componentwise, where
sgn(x) = −1, 0, or 1 if x < 0, = 0 or > 0.

Our goal is to find reasonable sufficient conditions under which

P(β̂(λ) =s β
o)→ 1.
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We will consider the fixed design case.

Denote λn = nλ.

Theorem: A Characterization of Lasso Solution

Denote the gradient of ‖y − Xβ‖2 by G(β) = −2XT (y − Xβ). Then a
necessary and sufficient condition for β̂ to be a Lasso solution is

Gj(β̂) = xT
j (y−Xβ̂) = λnsgn(β̂j), β̂j 6= 0,

|Gj(β̂)| = |xT
j (y−Xβ̂)| ≤ λn , β̂j = 0.

(3)

Moreover, if the Lasso solution is not unique (e.g., if p > n) and Gj(β̂) < λ

for some solution β̂, then β̂j = 0 for all Lasso solutions.

Proof: For the first statements regarding a necessary and sufficient
characterization of the solution, we invoke sub-differential calculus. Denote the
criterion function by

Qλ(β) =
1
2n
‖y−Xβ‖2 + λ‖β‖1.
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For a minimizer β̂(λ) of Qλ(·) it is necessary and sufficient that the subdifferential
at β̂(λ) is zero. If the j-th component β̂j(λ) 6= 0, this means that the ordinary first
derivative at β̂(λ) has to be zero:

∂Qλ(β)
∂βj

∣∣∣
β=β̂(λ)

= −xT
j (y−Xβ̂)/n + λsgn(βj)

∣∣∣
β=β̂(λ)

= 0.

This is equivalent to the first condition stated in the theorem.

On the other hand, if β̂j(λ) = 0, the subdifferential at β̂(λ) has to include the zero
element. That is

Gj(β̂(λ)) + λe = 0, for some e ∈ [−1, 1].

But this is equivalent to

|Gj(β̂(λ))| ≤ λ if β̂j(λ) = 0,

and this is equivalent to the second condition stated in the theorem.
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Regarding to the uniqueness of the zeros among different solutions we argue as
follows. Assume that there exist two solutions β̂(1) and β̂(2) such that for a
component j we have β̂(1)

j = 0 with |Gj(β̂
(1))| < λ, but β̂(2)

j 6= 0. Because the set
of all solutions is convex,

β̂ρ = (1− ρ)β̂(1) + ρβ̂
(2)

is also a minimizer for all ρ ∈ [0, 1]. By assumption and for 0 < ρ < 1, β̂ρ,j 6= 0
and hence, by the first statement from the KKT conditions, Gj(β̂ρ) = λn for all
ρ ∈ (0, 1). Hence, it holds for g(ρ) = |Gj(β̂ρ)| that g(0) < λ and g(ρ) = λ for all
ρ ∈ [0, 1]. But this contradicts to the fact that g(·) is continuous. Hence, a
non-active (i.e., zero) component j with |Gj(β̂)| < λ cannot be active (i.e.
non-zero) in any other solution.

Remark:
(i). The necessary and sufficient conditions stated in the above theorem is
known as Karush-Kunh-Tucker conditions (KKT Conditions).
(ii). Question: When is the Lasso solution unique?
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Derivation of Irrepresentable Condition

Let s1 = (sgn(β0j), j ∈ O)′, and X1 = (xj : j ∈ O) and

β̂n1 = (XT
1 X1)−1(XT

1 y− λns1) = β01 + Σ−1
11 (XT

1 ε− λns1)/n, (4)

where Σ11 = (XT
1 X1)/n.

If β̂n1 =s β01, then the equation (3) holds for β̂n = (β̂T
n1,0T )T . Thus, since

Xβ̂n = X1β̂n1 for this β̂n and (xj : j ∈ O) are linearly independent,

β̂n =s β0 if

{
β̂n1 =s β01,

|xT
j (y−X1β̂n1)| ≤ λn , ∀j /∈ O.

(5)

Let Hn = In −X1Σ−1
11 XT

1 /n . It follows from (4) that

y−X1β̂n1 = ε−X1(β̂n1 − β01) = Hnε+ X1Σ−1
11 s1λn/n

so that by (5),

β̂n =s β0 if

{
|βo

j − β̂nj | ≤ |βo
j |, ∀j ∈ O

|xT
j (Hnε+ X1Σ−1

11 s1λn/n)| ≤ λn , ∀j /∈ O.
(6)

Weixing Song STAT 905 November 7, 2014 44/53



By (4),

β̂n =s β0 if

{
|eT

j Σ−1
11 (XT

1 ε− λns1)/n| ≤ |βo
j |, ∀j ∈ O

|xT
j (Hnε+ X1Σ−1

11 s1λn/n)| ≤ λn , ∀j /∈ O,
(7)

where ej is the unit vector in the direction of the j-th coordinate. Therefore,

β̂n =s β0 if

{
|eT

j Σ−1
11 XT

1 ε|/n + λn |eT
j Σ−1

11 s1/n| ≤ |βo
j |, ∀j ∈ O

|xT
j Hnε| ≤ λn(1− |xT

j X1Σ−1
11 s1|/n), ∀j /∈ O.

(8)

If 1− |XT
j X1Σ−1

11 s1|/n ≥ η for some η > 0, then a sufficient condition for (8) is

β̂n =s β0 if

{
|eT

j Σ−1
11 XT

1 ε|/n + λn |eT
j Σ−1

11 s1/n| ≤ |βo
j |, ∀j ∈ O

|xT
j Hnε| ≤ λnη, ∀j /∈ O.

(9)
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Let β∗ = min{|βo
j | : j ∈ O}. Define

Ω1 =
{
max
j∈O

(
|eT

j Σ−11
11 XT

1 ε|+ λn |ejΣ−1
11 s|/n

)
≥ β∗

}
,

Ω2 =
{
max
j /∈O
|xT

j Hnε| ≥ λnη

}
.

Theorem

Suppose that |XT
j X1Σ−1

11 s1|/n ≤ 1− η for some η > 0. Then

P(β̂n 6=s β
o) ≤ P(Ω1) + P(Ω2).

Therefore, P(Ω1) + P(Ω2)→ 0 =⇒ P(β̂n =s βo)→ 0. If this holds, we say that
β̂n is sign consistent. Note that sign consistency implies selection consistency.

We will
(1). Find an upper bound for P(Ω1) + P(Ω2),
(2). Find conditions to ensure that the upper bound converges to zero.
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First consider P(Ω2) = P(maxj/∈O |xT
j Hnε| ≥ nλη).

Note that xT
j Hnε is normal with

E(xjHnε/
√
n) = 0, Var(xjHnε/

√
n) = xT

j Hnxjσ
2/n ≤ σ2,

we have

P(Ω2) = P(max
j/∈O
|xT

j Hnε|/(σ
√
n) >

√
nλη/σ)

≤ 2(p − do)(1− Φ(
√
nλη/σ))

≤ 2(p − do)
σ

√
2πηλ

√
n
exp
(
−
−η2nλ2

2σ2

)
.

When η
√
nλ/σ ≥ a0

√
log(p − do) with a0 ≥

√
2, we have

P(Ω2) ≤
2(p − do)1−a2

0/2

a0
√

2π log(p − do)
.
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Now consider P(Ω1). We have

P(Ω1) ≤ P
(
max
j∈O
|eT

j Σ−1
11 XT

1 ε|/n ≥ β∗/2
)

+ P
(
λn max

j∈O
|ejΣ−1

11 s1|/n ≥ β∗/2
)
. (10)

Denote the smallest eigenvalue of Σ11 by c1. We assume that c1 > 0.

For the second term in (10), we have

|ejΣ−1
11 s1| ≤ ‖ej‖ · ‖Σ−1

11 ‖ · ‖s1‖ ≤ c−1
1
√
do.

Thus, we want
β∗ > 2c−1

1 λ
√
do

which is needed for sign consistency.

Implication: The above inequality simply says that the original nonzero
parameters cannot be too small, which indeed is a pretty natural requirement.
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For the first term in (10), since eT
j Σ−1

11 XT
1 ε/
√
n ∼ N(0, σ2

j ), where
σ2

j = eT
j Σ−1

11 ejσ2 ≤ σ2/c1.

Therefore, the first term in (10) is bounded above by∑
j∈O

P
(
|eT

j Σ−1
11 X

T
1 ε|/(σj

√
n) ≥

√
nβ∗/(2σj)

)
≤ 2

∑
j∈O

(1− Φ(β∗
√
n/(2σj))) ≤ 2do(1− Φ(

√
c1β∗

√
n/(2σ)))

≤
4doσ

β∗
√nc1

exp
(
−
β2
∗nc1

8σ2

)
.

Note that when β∗ > 2λ
√
do/c1 and

√
nλ ≥ a0σ

√
log(p − do)/η with a0 ≥

√
2,

we have

P
(
max
j∈O
|eT

j Σ−1
11 X

T
1 ε|/n ≥ β∗/2

)
≤

2η
√
c1do√

log(p − do)
exp
(
−
a2

0do log(p − do)
2c1η2

)
.
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We summarize the above calculation in the following theorem.

Theorem 4: Sign Consistency

Suppose
(a). ε1, ε2, . . . , εn i.i.d. ∼ N(0, σ2),
(b). (Irrepresentable Condition) |xT

j X1Σ−11
11 s1|/n < 1− η for some

η > 0,

(c). c1 > 0, β∗ > 2λ
√
do/c1 and

√
nλ ≥ a0σ

√
log(p − do)/η with

a0 ≥
√
2.

Then
P(β̂n 6=s β

o) ≤ P(Ω1) + P(Ω2),
where

P(Ω1) ≤
2η
√
c1do√

log(p − do)
exp
(
−
a2

0do log(p − do)
2c1η2

)
and

P(Ω2) ≤
2(p − do)1−a2

0/2

a0
√

2π log(p − do)
.

Consequently, P(β̂n 6=s βo)→ 0 as p − do →∞.
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