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Model:

yi = xi1β1 + · · ·+ xipβp + εi , 1 ≤ i ≤ n

Notations:

• Response: y = (y1, . . . , yn)T .
• Predictors: xj = (x1j , . . . , xnj)T , j = 1, 2, . . . , p.
• Design Matrix: Xn×p = (x1, . . . ,xp).
• Residuals: ε = (ε1, . . . , εn)T .
• Regression Coefficients: β = (β1, . . . , βp)T .
• True Regression Coefficients: βo = (βo

1 , . . . , β
o
p)T .

• Oracle Set: O = {j : βo
j 6= 0}.

• Underlying Model Dimension: d0 = ‖O‖ = #{j : βo
j 6= 0}.
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Centering and Standardization

WLOG, we assume that the response and predictors are centered and the
predictors are standardized as follows

n∑
i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = n, 1 ≤ j ≤ p.

Then there is no intercept in the model.

Each predictor is standardized to have the same magnitude in L2. So the
corresponding regression coefficients are “comparable”.

After model fitting, the results can be readily transformed back to the original
scale.
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Lasso: Review

The Lasso estimator of βo is

β̂(λ) = argminβ

{ 1
2n
‖y−Xβ‖2

2 + λ‖β‖1

}
.

Consider the set of estimated variables using Lasso

Ô(λ) = {j : β̂j(λ) 6= 0, j = 1, 2, . . . , p}.

From the analysis of the Lars algorithm (Efron et al., 2004), we know that

|Ô(λ)| ≤ min(n, p) for all λ.
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Lasso tends to select a superset of the relevant covariates from O. Here is one
result that captures this property:

For some C > 0, define

O(C) = {j : |βo
j | ≥ C , j = 1, 2, . . . , p}, O = {j : |βo

j | 6= 0, j = 1, 2, . . . , p},

where βo is the true underlying parameter. One can show that for any
fixed 0 < C <∞, as n →∞,

P(Ô(λ) ⊃ O(C))→ 1.

So we do not miss any relevant covriates.

The question that follows is that when and how lim Ô(λ) = O.
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Ideally we want our model to exactly select the set of true covariates as n →∞.
This property is called consistency and it is the first requirement of an oracle
procedure.

Definition: Oracle Procedure

Denote β̂(δ) the coefficient estimator for fitting procedure δ. We call δ an
oracle procedure if β̂(δ) (asymptotically) has the following properties:

• Consistency: Identifies right subset model: {j : βj(δ) 6= 0} = O,

• Asymptotic Normality:
√

n(β̂O(δ)− βo
O) L−→ N(0,Σo), where

Σo is the covariance matrix knowing the true subset model.

For the sign consistency of Lasso, we introduced the irrepresentable condition.
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An approach to obtaining a convex objective function which yields oracle
estimators is using a weighted L1 penalty with weights determined by an initial
estimator. See Zou (2006) for detail.

Adaptive Lasso estimates β̂ is defined by

β̂(λ) = argminβ

{
1
2n
‖y−Xβ‖2

2 + λ

p∑
j=1

wj |βj |

}
,

where the weights can be constructed as

wj =
{
|β̃j |−γ , if β̃j 6= 0;
∞, if β̃j = 0.

We can use OLS (small p case) or Lasso estimator (large p case) as β̃.

If β̃j = 0, then β̂j = 0. If |β̃j | is large, the penalty is small for the j-th coefficient,
and vice versa.
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Adaptive Lasso: Computation

We can use the same algorithms for solving Lasso problems to solve adaptive
Lasso.

Without loss of generality, assume that all β̃j 6= 0 or all wj 6=∞.

Define W = diag(wj)p×p, and denote β∗j = wjβj , and β∗ = Wβ. Then

y = Xβ + ε = XW−1Wβ + ε = X∗β∗ + ε, where X∗ = XW−1,

and
1
2n
‖y−Xβ‖2

2 + λ

p∑
j=1

wj |βj | =
1
2n
‖y−X∗β∗‖2

2 + λ‖β∗‖1.

If β̂∗(λ) is the solution of the above Lasso problem, then

β̂(λ) = W−1β̂
∗(λ)

will be the adaptive Lasso solution.
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With a proper choice of λ, the adaptive Lasso enjoys the oracle properties. The
following result is from Zou (2006) for fixed p case.

Theorem

Suppose that
√

nλ → 0 and λn(γ+1)/2 → ∞. Then the adaptive Lasso
estimates must satisfy the following:

• Consistency in Variable Selection: limn→∞ P(Ô(λ) = O) = 1 as
n →∞;

• Asymptotic Normality:
√

n(β̂O(δ)− βo
O) =⇒ N(0, σ2Σ−1

11 ).

Therefore, the adaptive Lasso is consistent without requiring the irrepresentable
condition.

Extensions to p = p(n) is made by Huang et al. (2008).
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Sing Consistency in Large p Case

Consider the same setting as we derive the sign consistency for Lasso.

Let c1 and c2 be the smallest and largest eigenvalues of Σ11 respectively. Huang
et al. (2008) showed the sign consistency of adaptive Lasso under the following
conditions, with appropriately choosing tuning sequence:

• ε1, . . . , εn are i.i.d. N(0, σ2).
• There exist wn∗ and w∗n such that

P
(
max
j∈O
|wnj | ≤ wn∗, and min

j/∈O
|wnj | > wn∗

)
= 1− o(1).

• β∗ > 2wn∗λ
√

do/c1, w∗n > wn∗
√

c2do/c1.

Therefore, the irrepresentable condition is not required, if the initial estimator is
“good enough”.
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There are a number of limitations of the Lasso estimator, which make the Lasso
inappropriate for variable selection in some situations.

In the p > n case, the Lasso selects at most n variables before it saturates. This
could be a limiting feature for a variable selection method.

Lasso has no grouping property, it tends to only select one variable among a group
of highly correlated variables.

For usual n > p situations, if there are high correlations between predictors, it has
been empirically observed that the prediction performance of the Lasso is
dominated by ridge regression.
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For any fixed non-negative λ = (λ1, λ2), the elastic net (eNet) criterion is defined
as

L(λ1, λ2,β) =
1
2n
‖y−Xβ‖2 + λ1‖β‖1 +

1
2
λ2‖β‖2.

It is equivalent to a constraint LS method. Let α = λ2/(2λ1 + λ2). Then an
equivalent optimization problem is

β̂ = argminβ‖y−Xβ‖2, subject to (1− α)‖β‖1 + α‖β‖2 ≤ t.

The eNet penalty is a convex combination of the Lasso and ridge penalty. For all
α ∈ [0, 1), the penalty function is singular at 0 and it is strict convex for all α > 0.
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Penalty Function in eNet

Take p = 2 as an example.
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eNet: Solution

The eNet objective function L(λ1, λ2,β) is equivalent to a Lasso problem on
augmented data (X∗,y), where

X∗(n+p)×p = (XT ,
√

nλ2I )T , y∗ = (yT ,0T )T .

Then the naive eNet criterion becomes

L(λ,β) =
1
2n
‖y∗ −X∗β‖2 + λ1‖β‖1.

Since rank(X∗) = p, the elastic net can potentially select all p predictors.

The above formulation also says that the Naive eNet enjoys the computational
advantages of Lasso.
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eNet: Orthogonal Design

In the orthogonal design case, that is, xT
j xk = δjk , where δjk = I (j = k), the j-th

eNet estimator is

β̂j =
sgn(β̂LS

j )(|β̂LS
j | − λ1)+

1 + λ2
=
S(β̂LS

j ;λ1)
1 + λ2

,

where S(·;λ1) is the soft-thresholding operator.

To compare, recall the estimates for ridge regression and Lasso under orthogonal
design:

β̂ridge
j =

β̂LS
j

1 + λ2
, β̂Lasso

j = S(β̂LS
j ;λ1).
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eNet: Solution in Orthogonal Design

Note that

L(λ1, λ2,β) =
1
2n
‖y−Xβ‖2 + λ1‖β‖1 +

1
2
λ2‖β‖2

=
1
2n
‖y−Xβ̂LS‖2 + ‖Xβ −Xβ̂LS‖2 + λ1‖β‖1 +

1
2
λ2‖β‖2.

Note that XTX/n = I , then minimizing L(λ1, λ2,β) is equivalent to minimizing

1
2
‖β − β̂LS‖2 + λ1‖β‖1 +

1
2
λ2‖β‖2.

Easy to see the minimization problem is separable. That is, for each j, the eNet
solution is

β̂j = argminβj

{1
2

(βj − β̂LS
j )2 + λ1|βj |+

1
2
λ2β

2
j

}
= argminβj

{
1
2

(
βj −

β̂LS
j

λ2 + 1

)2

+
λ1

λ2 + 1
|βj |

}
= S

(
β̂LS

j

λ2 + 1
;

λ1

λ2 + 1

)
.

Weixing Song STAT 905 November 20, 2014 20/36



Grouping Effect

Sometimes, identification of “grouped variables” is desired.

Consider a general penalized regression approach

β̂ = argminβ

{ 1
2n
‖y−Xβ‖2 + λJ(β)

}
,

where J(·) is the penalty function.

A regression method exhibits the grouping effect if the regression coefficients of a
group of highly correlated variables tend to be equal.

Question: Does OLS or Lasso have the grouping effect?
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Lemma

Assume xi = xj , i, j ∈ {1, 2, . . . , p}.
• If J(·) is strictly convex, then β̂i = β̂j , for ∀λ > 0.

• If J(·) = ‖β‖1, and β̂1, β̂2 ≥ 0, then β̂∗ is another minimizer of the
generic penalization function, where

β̂∗k =

{
β̂k if k 6= i, j;

s(β̂i + β̂j) if k = i;
(1− s)(β̂i + β̂j) if k = j

for any s ∈ [0, 1].

Lasso is convex but not strictly convex; the eNet with λ2 > 0 is strictly convex.
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Theorem

Let β̂(λ1, λ2) = β̂ be the naive eNet estimate. Let ρjk = corr(xj ,xk). If
β̂j β̂k > 0, we have

√
n|β̂j − β̂k |
‖y‖

≤
1
λ2

√
2(1− ρjk).

Proof: Take derivative with βj , βk of the eNet objective function, respectively, we
get

−n−1xT
j (y−Xβ̂) + λ1sgn(β̂j) + λ2β̂j = 0

−n−1xT
k (y−Xβ̂) + λ1sgn(β̂k) + λ2β̂k = 0.

Hence, λ2(β̂j − β̂k) = n−1(xj − xk)T (y−Xβ̂). Note that ρjk = xT
j xk/n, and

‖xj − xk‖2 = 2n(1− ρjk), we have

n−1
∣∣(xj − xk)T (y−Xβ̂)

∣∣ ≤ n−1‖xj − xk‖ · ‖y−Xβ̂‖.

The theorem follows the fact that ‖y−Xβ̂‖ ≤ ‖y‖.

Weixing Song STAT 905 November 20, 2014 23/36



Remarks on eNet

The LHS of the inequality in the theorem is unitless, which describes the
difference between the coefficient path of predictors j and k.

The naive eNet does not perform “satisfactorily”.

The ridge penalty introduce an extra bias factor 1/(1 + λ2). This ridge shrinkage
on top of the Lasso shrinkage is the double shrinkage effect discussed in Zou and
Hastie (2005).

Zou and Hastie (2005) proposed to removes the ridge shrinkage factor by
multiplying the naive eNet by (1 + λ2) to obtain the eNet estimator

β̂eNet = (1 + λ2)β̂naive−eNet.

Scaling preserves the variable selection property but solves the shrinkage problem.
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The eNet estimator can be considered as Lasso estimator based on augmented
data.

The theoretical analysis can also take advantage of this fact. Prediction bound
and sign consistency can be similarly established.

We can consider a more general criterion

1
2n
‖y−Xβ‖2 + λ1

p∑
j=1

wj |βj |+
1
2
λ2β

T Qβ,

where wj ’s are adaptive weights and Q is a given positive semi-definite matrix.
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Model Set-up

Consider
y = X1β1 + · · ·+ Xpβp + ε,

where
• y = (y1, . . . , yn)T

• Xj = (xj1, . . . ,xjdj ) represents the design matrix of the j-th group of
variables of size dj with xjk = (x1jjk , . . . , xnjk)T

• βj = (βj1, . . . , βjdj )T

• ε = (ε1, . . . , εn)T

We are interested in selecting groups of variables.

Examples include analysis of high-dimensional genomic data in order to find
functional groups, pathways, groups consisting of co-expressed genes, SNPs in the
same haplotype block, and many others.
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Example (Impact Study): The
impact study was part of a three-year
project designed to measure the impact
of nutritional policies and
environmental change on obesity in the
high school students enrolled in Seattle
Public Schools. The primary goal of
this study is to determine the effects of
different risk factor on body mass
index (BMI).

Table 1 provides the definitions of the
variables included in the study. The 25
covariates can be naturally classified
into eight different groups, measuring
different aspects such as food sources
and demographics. The response
variable is the logarithm of the body
mass index.

There are 799 subjects with complete
records.
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Group Lasso: Formulation

Let Σj = XT
j Xj/n. The group Lasso criterion is defined as

β̂ = argminβL(β;λ), (1)

where

L(β;λ) =
1
2n

∥∥∥∥∥y−
p∑

j=1

Xjβj

∥∥∥∥∥
2

+ λ

p∑
j=1

√
dj‖βj‖Σj ,

and ‖βj‖Σj = (βT
j Σjβj)1/2.

Write Σj = RT
j Rj for a dj × dj upper triangular matrix Rj via Cholesky

decomposition.

Assume that Σj is invertible. Let X̃j = XjR−1
j and bj = Rjβj , and denote

b̂ = argminbL(b;λ) = argminb

{
1
2n

∥∥∥∥∥y−
p∑

j=1

X̃jbj

∥∥∥∥∥
2

+ λ

p∑
j=1

√
dj‖bj‖

}
.

Then β̂j = R−1
j b̂j .
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Note that
n−1X̃T

j X̃j = (R−1
j )T (n−1XT

j Xj)R−1
j = Idj .

Thus using the ‖ · ‖Σj norm in (1) amounts to standardizing the desing matrices
Xj ’s.

WLOG, we assume that Xj is orthonormalized with n−1XT
j Xj = Idj .

The implementation of the group Lasso is an extension of the shooting algorithm
(Fu, 1999) for the Lasso. It is motivated by the following proposition, which is a
direct consequence of Karush-Kuhn-Tucker (KKT) conditions.

Necessary and Sufficient Conditions for Group Lasso Solution

A necessary and sufficient condition for b̂ to be a solution to argminbL(b;λ)
is

−n−1XT
j (y−Xb̂) +

λb̂j
√

dj

‖b̂j‖
= 0, ∀ b̂j 6= 0,

‖n−1XT
j (y−Xb̂)‖ ≤ λ

√
dj ∀ b̂j = 0, j = 1, 2, . . . , p.
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Recall that n−1XT
j Xj = Idj . It can be verified that the solution to the equations

in proposition is

b̂j =

(
1−

λ
√

dj

‖n−1XT
j (y−XT b̂−j)‖

)
+

n−1XT
j (y−XT b̂−j),

where b−j = (b̂T
1 , . . . , b̂j−1,0T , b̂T

j+1, . . . , b̂T
p )T .

The Group Lasso solution can therefore be obtained by iteratively applying the
above equation.

In particular, if we further assume that XT
j Xk = 0, j 6= k, then it is easy to see

that The problem simplifies to that of estimation in p single-group models of the
form y = Xjbj + ε.

Let zj = (XT
j Xj)−1XT

j y = n−1XT
j y be the LSE of bj . Then based on the

previous proposition, we can show that the group Lasso estimator for the j-th
group is

b̂j(λ) = argminbj

{ 1
2n
‖y−Xjbj‖2 + λ

√
dj‖bj‖

}
=

(
1−

λ
√

dj

‖zj‖

)
+

zj . (2)
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Group Lasso: Group Coordinate Descent

The group coordinate descent (GCD) algorithm is a straightforward extension of
the coordinate descent algorithm we have discussed.

Suppose the current values for the group coefficients β̃(s)
k , k 6= j are given. We

want to minimize L with respect to βj . Define

Lj(βj ;λ) =
1
2n

∥∥∥∥∥y−∑
k 6=j

Xk β̃
(s)
k −Xjβj

∥∥∥∥∥
2

+ λ
√

dj‖βj‖.

Denote ỹj =
∑

k 6=j Xk β̃
(s)
k and z̃j = n−1XT

j (y− ỹj). Let β̃j denote the minimizer
of Lj(βj ;λ). We have

β̃j = S(z̃j ;
√

djλ),
where S is the multivariate soft-threshold operator defined by

S(z; t) =
(
1−

t
‖z‖

)
+
z.
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Group Lasso: GCD Algorithm

Coordinate Descent Algorithm

For any fixed λ,

1. Start with an initial value for β̃
(0) =

(
β̃

(0)T
1 , . . . , β̃

(0)T
p

)T
;

2. In the s + 1-th iteration,
(1). Let j = 1;
(2). Calculate

z̃j = n−1XT
j (y− ỹj) = n−1XT

j (y− ỹ + Xjβ̃
(s)
j ) = n−1Xjr + β̃

(s)
j ,

where ỹ =
∑p

j=1
Xjβ̃

(s)
j is the vector of current fitted values and

r = y− ỹ is the current residual.
(3). Update β̃

(s+1)
j using S(z̃j ;

√
djλ). If j = p, then exit step 2.

(4). Update r using r −Xj(β̃
(s+1)
j − β̃

(s)
j ).

(5). Let j ⇐ j + 1, repeat (2)-(4).
3. Repeat step 2 for s + 1 until convergence.

NOTE: The above algorithm is designed for the cases in which the predictors are standardized to

have L2-norm n.
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The last step ensures that r always holds the current values of the residuals.

The GCD algorithm has the potential to be extremely efficient, in that the above
three steps require only O(2ndj) operations.

One full iteration can be completed at a computational cost of O(nd) operations.

The algorithm described above can be used repeatedly to compute β̂(λ) on a grid
of values of λ.

Let λmax be the smallest value for which all coefficients are 0 and λmin be the
minimum value of λ. From (2), one can take λmax = max1≤j≤p ‖n−1Xjy‖. If∑p

j=1 dj < n and the design matrix if full rank, λmin can be 0. In other settings,
we use λmin = 0.001λmax.

Let λmax > λ1 > · · · > λK > λmin be a grid of decreasing λ-values. We start at
λmax for which β̃ has the solution 0, and proceed along the grid using the value of
β̂ at the previous point of λ in the grid as the initial value for the current point in
the algorithm.
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