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Principal Component Analysis (PCA) is a technique for examining relationships
among a set of variables (generally correlated).

PCA linearly transforms the original set of, say, p variables x to a new set of p
uncorrelated variables, and orders the variables in decreasing order of
“importance”, determined by the portion of explained total variance in x. The
new variables are called the principal components (PC).

The PCs of x takes the form vT
k x, ‖vk‖ = 1. Loosely speaking, the PCs are the

choices that maximize the variance, subject to being uncorrelated with all the
others.

The usual objective of PCA is to see if the first few PCs account for most of the
variation in the original data. If they do, then it is argued that the effective
dimensionality is less than p.
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Suppose a random vector x has covariance matrix Σ with its
eigenvalue-eigenvector pairs (d2

k ,vk), where d1 ≥ · · · ≥ dp ≥ 0. That is,
Σ = VD2VT and D =diag(dk).

The p PCs are given by zk = vT
k x, k = 1, . . . , p, and

Var(zk) = d2
k , Cov(zk , zj) = δj,k .

With this background in mind, PCA is the action of decomposing a process Z as a
superposition of its principal components. The analysis consists of two steps.

• Analysis Step: This step finds the orthonormal eigenvectors vk and projects
x onto this basis, i.e.,

zk = vT
k x, z = VT x.

• Synthesis Step: This step reconstructs the process from the principal
components using the orthonormal eigenvectors, i.e.,

xj =
p∑

k=1

vjkzk , x = Vz.

Weixing Song STAT 905 December 2, 2014 5/39



PCA finds a linear combination of the original variables such that the derived
variables capture maximal variance.

With observed data, the sample PCA can be computed via a SVD of the data
matrix.

Let the data X be a n × p matrix where n and p are the number of observations
and variables, respectively. Assume the column means of X are zeros, and the
SVD of X be

X = UDVT .

Then Z = UD are the PCs. The k-th PC accounts for a proportion
d2

i /trace(XT X) of the total variation in the data.
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The vectors vk (the columns of V) are the principal component directions, or
loadings, and they describe the transformation process by which the new variables
are created as a linear combination of the old ones.

The vectors uk (the columns of U) are the normalized PCs or PC scores.

The singular values dk indicate the relative importance of the PCs.
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Example (Image Compression): The following KSU-Wildcat picture is stored
as a jpeg file which is a 200× 200× 3 array in R.

The first, second and third layer contains the intensity of red, green and blue
colors, respectively, which are real numbers between 0 and 1. The figure on the
right is an illustration.
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We can use PCA to compress a figure. For the KSU-Wildcat jpeg file, the
following are the compressed versions by taking the number of singular values to
be 1, 5, 20 and 50.
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The following program is used for the analysis in the example.
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The success of PCA is due to the following two optimal properties:
• PCA sequentially captures the maximum variability among the columns of

X, guaranteeing minimal information loss.
• PCs are uncorrelated, so we can talk about one PC without referring to

others.

However, PCA has drawbacks.

One drawback of PCA is that it is hard to interpret the derived PCs. Each PC is
linear combinations of all p variables and the loadings are typically nonzero.

Deriving a “sparse” PCA has been an interesting research problem.

Zou et al. (2004) introduced a sparse PCA (SPCA), which builds on the fact that
PCA can be written as a regression-type optimization problem.
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Previous solutions to enforce sparsity includes

• Rotation techniques have been used to interpret the PCs (Jolliffe, 1995).
• Only consider loadings from a small set, such as {−1, 0, 1} (Vines, 2000).
• Threshold the loadings (Cadima and Jolliffe, 1995).
• ScoTLASS gets modified PCs with possible zero loadings (Jolliffe,

Trendafilov and Uddin, 2003).
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Review: Lasso and Elastic Net

Consider a linear regression model with n observations and p predictors. Let y be
the response vector and X = (x1, . . . ,xp) be the design matrix.

We assume all the xj and y are centered.

The Lasso criterion:

β̂Lasso = argminβ

{ 1
2n
‖y−Xβ‖2 + λ‖β‖1

}
.

The Elastic Net criterion:

β̂eNet = argminβ

{ 1
2n
‖y−Xβ‖2 + λ‖β‖1 + λ2‖β‖2

}
.

The Lars-EN algorithm (Zou and Hastie, 2005) efficiently solves the elastic net
problem for all λ1 with the computational cost of a single least squares fit.
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ScoTLASS

The ScoTLASS proposed by Jolliffe, Trendafilov and Uddin (2003) directly
imposes an L1 constraint on PCA.

ScoTLASS successively maximizes aT
k XT Xak subject to aT

j ak = δj,k and
‖ak‖1 ≤ t for k = 1, 2, . . . , p.

No guidance of how to choose the t was provided and the computational cost of
the optimization problem is high due to nonconvexity.
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Motivation: Direct Sparse Approximation

Observe that each PC is a linear combination of the p variables, thus its loadings
can be recovered by regressing the PC on the p variables.

Theorem 1

For each i, denote by zi = diui the i-th principal component. Consider a
positive λ and the ridge estimates β̂

ridge given by

β̂
ridge = argminβ{‖zi −Xβ‖2 + λ‖β‖2}.

Let v̂ = β̂
ridge

/‖β̂ridge‖. Then v̂ = vi .

This theorem shows the connection between PCA and a regression method. Note
that after normalization, the coefficients are independent of λ.

Proof: Note that X = UDVT , XT X = VD2VT , and zi = diui = Xvi . We have

β̂
ridge = (XT X + λI )−1XT zi = (XXT + λI )−1XT Xvi

= (VD2VT + λI )−1VD2VT vi = [d2
i /(d2

i + λ)]vi .
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Now consider adding a L1 penalty.

β̂ = argminβ[‖zi −Xβ‖2 + λ2‖β‖2 + λ1‖β‖1],

where ‖β‖1 is the L1 norm of β.

We call v̂i = β̂/‖β̂‖ an approximation to vi and Xv̂i is the i-th approximated
PC. Clearly, a large enough λ1 gives a sparse β̂, hence a sparse vi .

Theorem 1 depends on the results of PCA, so it is not a genuine alternative.

We shall introduce a “self-contained” regression type criterion for deriving
principal components.
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Theorem 2

For any λ > 0, let

(α̂, β̂) = argminα,β{‖X−XβαT‖2 + λ‖β‖2}, subject to ‖α‖2 = 1.

Then β̂ ∝ v1.

Proof: Note that

‖X−XβαT‖2 = trace
[
(X−XβαT )(X−XβαT )T

]
= trace(XT X) + βT XT Xβ − 2αT XT Xβ.

So the target function becomes

trace(XT X) + βT (XT X + λI )β − 2αT XT Xβ.

For any fixed α, β(α) = (XT X + λI )−1XT Xα. Plugging back to the target
function, we have

α̂ = argminααT XT X(XT X + λI )−1XT Xα,

which leads to
α̂ = v1, β̂ =

d2
1

d2
1 + λ

v1.
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For any matrices A,B,C , if dimensions match, then

vec(ABC) = (CT ⊗A)vec(B), (A⊗ B)(C ⊗D) = (AC)⊗ (BC).

Use these facts, we can obtain β(α) as follows:

‖X−XβαT‖2 + λ‖β‖2 = ‖vec(X−XβαT )‖2 + λ‖β‖2

= ‖vec(X)− vec(XβαT )‖2 + λ‖β‖2 = ‖~(X)− (α⊗X)β‖2 + λ‖β‖2.

So,

β̂ = [(αT ⊗XT )(α⊗X) + λI ]−1(αT ⊗XT )vec(X) = (XT X + λI )−1XT Xα.

The next theorem extends Theorem 2 to derive the whole sequence of PCs.
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Theorem 3

Consider the first k PCs. Let Ap×k = (α1, . . . ,αk) and Bp×k =
(β1, . . . ,βk). For any λ > 0, let

(Â, B̂) = argminA,B

{
‖X−XBAT‖2 + λ

k∑
j=1

‖βj‖2

}
,

subject to AT A = Ik×k . Then β̂j ∝ vj for j = 1, . . . , k.

Proof: Let

Cλ(A,B) =
n∑

i=1

‖xi −ABT xi‖2 + λ

k∑
j=1

‖βj‖2.

Since A is orthonormal, so for A⊥ be any orthonormal matrix such that [A; A⊥]
is p × p orthonormal, we have

n∑
i=1

‖xi −ABT xi‖2 = ‖X−XBAT‖2 = ‖XA⊥‖2 + ‖XA−XB‖2.
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Hence, with A fixed, solving argminBCλ(A,B) is equivalent to solving the series
of ridge regressions

argminβj ,j=1,...,k

k∑
j=1

{
‖Xαj −Xβj‖2 + λ‖βj‖2

}
.

It is easy to show that
B̂ = (XT X + λI )−1XT XA.

Therefore, we have the partially optimized penalized criterion

Cλ(A, B̂) = ‖XA⊥‖2 + trace((XA)T (I − Sλ)(XA)),

where Sλ = X(XT X + λI )−1XT .

Rearranging the terms, we get

Cλ(A, B̂) = trace(XT X)− trace(AT XT SλXA),

which must be minimized w.r.t. A with AT A = I . Hence A should be taken to
be the largest k eigenvectors XT SλX. If the SVD of X is UDVT , it is easy to
show that XT SλX = VD2(D2 + λI )−1D2VT , hence Â = V[, 1 : k]. Likewise,
plugging the SVD of X into the formula of B, we see that each βj are scaled
elements of the corresponding Vj .
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Sparse PCA Criterion

We now add an L1 penalty to produce sparse loadings or regression coefficients,
yielding the following optimization problem:

(Â, B̂) = argminA,B

{
‖X−XBAT‖2 + λ

k∑
j=1

‖βj‖2 +
k∑

j=1

λ1,j‖βj‖1

}
,

subject to AT A = Ik×k .

Computation:

• For fixed αj :
For each j, let y∗j = Xαj . Then B̂ = (β̂1, . . . , β̂k), where each β̂j is an elastic
net estimate

β̂j = argminβj
‖y∗j −Xβj‖2 + λ‖βj‖2 + λ1,j‖βj‖1.

• For fixed βj :
If B is fixed, we can ignore the penalty part and only minimize
‖X−XBAT‖ subject to AT A = I . The solution is shown in Theorem 4.
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Theorem 4 (Reduced Rank Procrustes Rotation)

Let Mn×p and Nn×k be two matrices. Consider the constrained maximiza-
tion problem

Â = argminA‖M−NAT‖2

subject to AT A = Ik×k . Suppose the SVD of MT N is UDVT , then
Â = UVT .

Proof: Expand the matrix norm

‖M−NAT‖2 = trace(MT M)− 2trace(MT NAT ) + trace(ANT NAT ).

Since AT A = I , the last term is equal to trace(NT N), and hence we need to
maximize the middle term. With the SVD MT N = UDVT , the middle term
becomes

trace(MT NAT ) = trace(UDVT AT ) = trace((AV)T UD).

where (AV )T AV = I . Since D is diagonal, the above is maximized when the
diagonal of (AV )T U is positive and maximum. By Cauchy-Schwartz inequality,
this is achieved when AV = U, in which case the diagonal elements are all 1.
Hence Â = UVT .
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SPCA Algorithm:

1. Initialize A at V[:; 1 : k], the loadings of the first k ordinary PCs.
2. Given a fixed A = (α1, . . . ,αk), solve the following elastic net problem for

j = 1, 2, . . . , k

β̂j = argminβj
‖y∗j −Xβj‖2 + λ‖βj‖2 + λ1,j‖βj‖1.

3. For fixed B = (β1, . . . ,βk), compute the SVD of XT XB = UDVT , then
update A = UVT .

4. Repeat Steps 2-3 until convergence.
5. Normalize: β̂j = βj/‖βj‖, j = 1, 2, . . . , k.

Weixing Song STAT 905 December 2, 2014 24/39



Remarks:

(a). Various methods have been developed for SPCA problem. The method
presented here is the first of the kind.

(b). A good SPCA method should possess the following properties:

• Without any sparsity constraint, the method should reduce to
PCA.

• It should be computationally efficient for both small p and big p
data.

• It should avoid misidentifying the important variables.
• Orthogonality?
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The SVD of a matrix X is

X = UDVT =
r∑

k=1

Xk =
r∑

k=1

dkukvT
k , VT V = UT U = I ,

where
• D = diag(d1, . . . , dr ) with singular values d1 > · · · > dr > 0.
• rank(X) = r .
• Xk = dkukvT

k is the layer-k unit-rank matrix.
• U = (u1, . . . ,ur ) consists of r orthonormal left singular vectors.
• V = (v1, . . . ,vr ) consists of r orthonormal right singular vectors.
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One method for sparse singular value decomposition: Minimizing

1
2
‖X− duvT‖2 + λ

p∑
i=1

q∑
j=1

wij |duivj | (1)

where
• duvT is a unit-rank SVD, and ‖u‖ = ‖v‖ = 1.

• wij = w(d)w(u)
i w(v)

j are data driven weights. Let d̃ũṽT be a unit-rank initial
estimator, the weights can be chosen as w(d) = |d̃|−γ ,

w(u) = (w(u)
1 , . . . ,w(u)

p )T = |ũ|−γ ,
w(v) = (w(v)

1 , . . . ,w(v)
p )T = |ṽ|−γ .

• µ = 2 in Zou (2006).
• Other layers can be obtained by sequentially fitting previous residuals. See

Chen et al. (2012) for details.
• Special case of sparse unit-rank regression (SURR), see Chen et al. (2012).
• Various extensions.
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The objective function (1) admits a multiconvex structure. For fixed u,
minimization of function (1) w.r.t. (d,v) becomes minimization with respect to
v̌ = diag(dw(v))v of

1
2
‖y−X(v)v̌‖2 + λv

q∑
j=1

|v̌j |, (2)

where

y = vec(X), X(v) = diag(w(v))−1 ⊗ u, λ(v) = λw(d)

(
p∑

i=1

w(u)
i |ui |

)
and ⊗ is the Kronecker product. Model (2) can be recognized as a Lasso
regression w.r.t. v̌. Moreover, not that X(v) is always an orthogonal matrix; hence
the solution of problem (2) is explicit.
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In contrast, for fixed v, minimization of function (1) w.r.t. (d,u) becomes
minimization w.r.t. ǔ = diag(dw(u))u of

1
2
‖y−X(u)ǔ‖2 + λu

p∑
i=1

|ǔi |, (3)

where

X(u) = v⊗ diag(w(u))−1, λ(u) = λw(d)

(
q∑

j=1

w(v)
j |vj |

)
.

Again, this is a lasso regression problem with respect to ǔ.
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The following are the steps of the numerical sparse unit rank regression algorithm
for a fixed λ.

(a). Choose a non-zero initial value for û.
(b). Given u = û, minimize function (2) to obtain v̌. Let

d̂ = ‖diag(w(v))−1v̌‖, v̌ = diag(d̂w(v))−1v̌.

(c). Given v = v̂, minimize function (3) to obtain ǔ. Let

d̂ = ‖diag(w(u))−1ǔ‖, v̌ = diag(d̂w(u))−1ǔ.

(d). Repeat steps (b) and (c), until Ĉ = d̂ûv̂T converges, i.e.
‖Ĉc − Ĉp‖F/‖Ĉp‖F < ε, where Ĉc is the current fit, Ĉp is the previous fit
and ε is the level of tolerance, e.g. ε = 10−6.
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Application: Microarray Biclustering

Background: High dimensional microarray data analysis.

Goal: Identify sets of genes that are significantly expressed for certain cancer
types. See Busygin et al. (2008), Lee et al. (2010).

Data: Expression levels of thousands of genes (p = 12625), measured from a few
subjects (n=56). The cancer type of each subject is known (Carcinoid[20],
Colon[13], Normal[17] and Small Cell[6]).

Figure: The original gene expression matrix
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Method 1: Unsupervised Learning

• Penalized matrix decomposition (Witten et al. 2009, Lee et al. 2010).
• Sparse SVD (Chen et al. 2012).

Result:

Figure: The original expression matrix (left) and the sparse estimate (right)
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Method 1: Unsupervised Learning

• Penalized matrix decomposition (Witten et al. 2009, Lee et al. 2010).
• Sparse SVD (Chen et al. 2012).

Result:

Figure: Estimated SVD layers by SSVD
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Method 2: Supervised Learning

• Incorporate cancer type information.
• Extract only the associations between genes and cancer types.
• Sparse SVD (Chen et al. 2012).

Result:

Figure: The original expression matrix (left) and the sparse estimate (right)
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Method 2: Supervised Learning

• Incorporate cancer type information.
• Extract only the associations between genes and cancer types.
• Sparse SVD (Chen et al. 2012).

Result:

Figure: Estimated SVD layers by RRR-SSVD
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